2. Tan S. Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Systems with Applications, 2005, 28(4): 667-671
3. Joachims T. Learning to classify text using support vector machines: Methods, Theory and Algorithms. Dordrecht, Netherlands: Kluwer Academic Publishers, 2002
4. Leopold E, Kindermann J. Text categorization with support vector machines. how to represent texts in input space?. Machine Learning, 2002, 46(1/2/3): 423-444
5. Xue H, Chen S C, Yang Q. Structural regularized support vector machine: a framework for structural large margin classifier. IEEE Transactions on Neural Networks, 2011, 22(4): 573-587
6. Xue X B, Zhou Z H. Distributional features for text categorization. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(3): 428-442
7. Qi X G, Davison B D. Web page classification: features and algorithms. ACM Computing Surveys, 2009, 41(2): 1-31
8. Lan M, Tan C, Low H, et al. A comprehensive comparative study on term weighting schemes for text categorization with support vector machines. Proceedings of the 14th International Conference on World Wide Web (WWW’05), May 10-14, 2005, Chiba, Japan. New York, NY, USA: ACM, 2005: 1032-1033
9. Lan M, Tan C L, Su J et al. Supervised and traditional term weighting methods for automatic text categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(4): 721-735
10. Alt?nçay H, Erenel Z. Analytical evaluation of term weighting schemes for text categorization. Pattern Recognition Letters, 2010, 31(11): 1310-1323
11. Quan X J, Liu W Y, Qiu B T. Term weighting schemes for question categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 1009-1021
12. Isa D, Lee L H, Kallimani V. A polychotomizer for case-based reasoning beyond the traditional bayesian classification approach. Journal of Computer and Information Science, 2008, 1(1): 57-68
13. Isa D, Lee L H, Kallimani V P, et al. Text document preprocessing with the bayes formula for classification using the support vector machine. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(9): 1264-1272
14. Salton G, Buckley C. Term-weighting approaches in automatic text retrieval. Information Processing and Management, 1988, 24(5): 513-523
16. Debole F, Sebastiani F. Supervised term weighting for automated text categorization. Proceedings of the 20th Annual ACM Symposium on Applied Computing (SAC’03), Mar 9-12, 2003, Melbourne, FL, USA. New York, NY, USA: ACM, 2003: 784-788
17. Ping Y, Zhou Y J, Yang Y X, et al. A novel term weighting scheme with distributional coefficient for text categorization with support vector machine. Proceedings of the IEEE 2nd Youth Conference on Information, Computing and Telecommunications (YCICT’10), Nov 28-30, 2010, Beijing, China. Piscataway, NJ, USA: IEEE, 2010: 182-185
18. Ko Y, Park J, Seo J. Improving text categorization using the importance of sentences. Information Processing and Management, 2004, 40(1): 65-79
19. Kim J, Kim M J. An evaluation of passage-based text categorization. Journal of Intelligent Information Systems, 2004, 23(1): 47-65
20. Tseng C Y, Sung P C, Chen M S. Cosdes: a collaborative spam detection system with a novel e-mail abstraction scheme. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(5): 669-682
22. Lertnattee V, Theeramunkong T. Effect of term distributions on centroid-based text categorization. Information Sciences, 2004, 158(1): 89-115
23. Guan H, Zhou J Y, Guo M Y. A class-feature-centroid classifier for text categorization. Proceedings of the 18th International Conference on World Wide Web (WWW’09), Apr 20-24, 2009, Madrid, Spain. New York, NY, USA: ACM, 2009: 201-210
25. Isa D, Kallimani V P, Lee L H. Using the self organizing map for clustering of text documents. Expert Systems with Applications, 2009, 36(5): 9584-9591
26. Porter M. An algorithm for suffix stripping. Program, 1980, 14(3): 130-137
27. Lang K. NewsWeeder: learning to filter netnews. Proceedings of the 12th International Conference on Machine Learning (ICML’95), Jul 9-12, 1995, Tahoe City, CA, USA. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1995: 331-339
28. Graven M, DiPasquo D, Freitag D, et al. Learning to extract symbolic knowledge from the World Wide Web. Proceedings of the 15th National Conference for Artificial Intelligence (AAAI’98), Jul 26-30, 1998, Madison, WI, USA. Cambridge, MA, USA: MIT Press, 1998: 509-516
29. Fan R E, Chang K W, Hsieh C J, et al. Liblinear: a library for large linear classification. Journal of Machine Learning Research, 2008, 9: 1871-1874 |