2. Armknecht F,Krause M. Algebraic attacks on combiners with memory. Advances in Crytography:Proceedings of the 23rd Annual International Cryptology Conference (Crypto’03), Aug 17-21, 2005,Santa Barbara, CA, USA. LNCS 2729. Berlin, Germany: Springer-Verlag, 2003: 162-175
3. Armknecht F. Improving fast algebraic attacks. Proceedings of the Fast Software Encryption Workshop(FEC’04),Feb 5-7,2004, New Delhi, India. LNCS 3017. Berlin, Germany: Springer-Verlag, 2004: 65-82
4. Canteaut A. Open problems related to algebraic attacks on stream ciphers. Proceedings of the International Workshop on Coding and Cryptography(WCC’05), Mar 14-18, 2005,Bergen, Norway: LNCS 3969. Berlin, Germany: Springer-Verlag, 2005: 120-134
5. Courtois N,Meier W.Algebraic attacks on stream ciphers with linear feedback. Advances in Cryptology: Proceedings of the 22nd International Conference on the Theory and Applications of Cryptographic Techniques(Eurocrypt’03),May 4-8, 2003. Warsaw, Poland.LNCS 2656. Berlin, Germany:Springer-Verlag, 2003: 345-359
6. Courtois N. Fast algebraic attacks on stream ciphers with linear feedback. Advances in Crytography: Proceedings of the 23rd Annual International Cryptology Conference (Crypto’03), Aug 17-21, 2005,Santa Barbara, CA, USA. LNCS 2729. Berlin, Germany: Springer-Verlag, 2003: 176-194
7. Courtois N, Pieprzyk J. Cryptanalysis of block ciphers with overdetermined systems of equations. Advances in Cryptology:Proceedings of the 8th International Conference on the Theory and Applications of Cryptology and Information Security (Asiacrypt’02), Dec 1-5, 2002. Queenstown, New Zealand. LNCS 2501. Berlin, Germany:Springer-Verlag,2002: 267-287
8. Meier W,Pasalic C,Carlet C. Algebraic attacks and decomposition of Boolean functions. Advances in Cryptology: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt’04), May 2-6, 2004, Interlaken, Switzerland. LNCS 3027. Berlin, Germany:Springer-Verlag,2004: 474-491
9. Armknecht F. On the existence of low-degree equations for algebraic attacks. Cryptology ePrint Archive, Report 2004/185
10. Carlet C,Dalai D K,Gupta K C, et al. Algebraic immunity for cryptographically significant Boolean functions analysis and construction. IEEE Transactions on Information Theory, 2006, 52(7): 3105-3121
11. Carlet C.On the higher order nonlinearities of algebraic immune functions. Advances in Crytography: Proceedings of the 26th Annual International Cryptology Conference (Crypto’06), Aug 20-24, 2005, Santa Barbara, CA, USA. LNCS 4117. Berlin, Germany: Springer-Verlag, 2006:584-601
12. Dalai D K,Gupta K C,Maitra S. Results on algebraic immunity of cryptographically significant Boolean functions. Progress in Cryptology: Proceedings of the 5th International Conference on Cryptology in India (Indocrypt ’04), Dec 20-22, 2004, Chennai, India. LNCS 3348.Berlin, Germany: Springer-Verlag, 2004: 92-106
13. Golic J D. Vectorial Boolean functions and induced algebraic equations. IEEE Transactions on Information Theory, 2006, 52(2): 528-537
14. Gong G. On existence and invariant of algebraic attacks. Advances in Crytography:Proceedings of the 24th Annual International Cryptology Conference (Crypto’04), Aug 15-19, 2004,Santa Barbara, CA, USA. LNCS 3152. Berlin, Germany: Springer-Verlag, 2004
15. Armknecht F,Carlet C,Gaborit P, et al. Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. Advances in Cryptology: Proceedings of the 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt’06), May 28-Jun 1, 2006, St Petersburg, Russia. LNCS 4004. Berlin, Germany: Springer-Verlag, 2006: 147-164
16. Braeken A,Preneel B. On the algebraic immunity of symmetric Boolean functions. Progress in Cryptology: Proceedings of the 6th International Conference on Cryptology in India(Indocrypt’05),Dec 10-12, 2005, Bangalore, India. LNCS 3797. Berlin, Germany: Springer-Verlag, 2005:35-48
17. Carlet C. A method of construction of balanced functions with optimum algebraic immunity. Cryptology ePrint Archive,Report, 2006
18. Dalai D K,Maitra S,Sarkar S. Basic theory in construction of Boolean functions with maximal possible annihilator immunity. Designs, Codes and Cryptography 2006,4(1):41-58
19. Canteaut A,Videau M. Symmetric Boolean functions. IEEE Transactions on Information Theory, 2005, 51(8): 2791-2811
20. Pieprzyk J, Qu C X. Fast hashing and rotation symmetric functions. Journal of Universal Computer Science, 1999,5(1): 20-31 |