1. Kocarev L. Chaos-based cryptography: A brief overview. IEEE Circuits and Systems Magazine, 2001, 1(3): 6-21
2. Pareek N K, Patidar V , Sud K K. A random bit generator using chaotic maps. International Journal of Network Security, 2010, 10 (1): 32-38
3. He B, Luo L Y, Xiao D. A method for generating S-box based on iterating chaotic maps. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22 (1): 89-93 (in Chinese).
4. Kocarev L, Tasev Z. Public-key encryption based on Chebyshev maps. Proceedings of the International Symposium on Circuits and Systems (ISCAS’03), Vol 3, May 25-28, 2003, Bangkok, Thailand. Los Alamitos, CA, USA: IEEE Computer Society, 2003: 28-31
5. Bergamo P, D’Arco P, Santis A D, et al. Security of public-key cryptosystems based on Chebyshev polynomials. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(7): 1382-1393
6. Fee G J, Monagan M B. Cryptography using Chebyshev polynomials. Proceedings of the Maple Summer Workshop (MSW’04), Jul 11-14, 2004, Burnaby, Canada. 2004: 15p
7. Kocarev L, Tasev Z, Amato P, et al. Encryption process employing chaotic maps and digital signature process. United States Patent 6892940. 2005
8. Kocarev L, Makraduli J, Amato P. Public-key encryption based on Chebyshev polynomials. Circuits, Systems, and Signal Processing, 2005, 24(5): 497-571
9. Ning H Z, Liu Y, He D Q. Public key encryption algorithm based on Chebyshev polynomials over finite fields. Proceedings of the 8th International Conference on Signal Processing (ICSP’06): Vol 4, Nov 16-20, 2006, Beijing, China. Piscataway, NJ, USA: IEEE, 2006: 4p
10. Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 1985, 31(4): 469-472
11. Lima J B, Campello de Souza R M, Panario D. Security of publickey cryptosystems based on Chebyshev polynomials over prime finite fields. Proceedings of the IEEE International Symposium on Information Theory (ISIT’08), Jul 6-11, 2008, Toronto, Canada. Piscataway, NJ, USA: IEEE, 2008: 1843-1847
12. Wang D H, Yang H Z, Yu F S, et al. A new key exchange scheme based on Chebyshev polynomials. Proceedings of the Congress on Image and Signal Processing (CISP’08), May 27-30, 2008, Sanya, China. Piscataway, NJ, USA: IEEE, 2008: 124-127
13. Wang D H, Hu Z G, Tong Z J, et al. An identity authentication system based on Chebyshev polynomials. Proceedings of the 1st International Conference on Information Science and Engineering (ICISE’09), Dec 26-28, 2009, Nanjing, China. Piscataway, NJ, USA: IEEE, 2010: 1648-1650
14. Wang X Y, Zhao J F. An improved key agreement protocol based on chaos. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 4052-4057
15. Menezes A J, Van Oorschot P C, Vanstone S A. Handbook of applied cryptography. New York, NY, USA: CRC Press, 1997
16. Muller S. On the Computation of square roots in finite fields. Designs, Codes and Cryptography, 2004, 31 (3): 301-312
1. Kocarev L. Chaos-based cryptography: A brief overview. IEEE Circuits and Systems Magazine, 2001, 1(3): 6?21 2. Pareek N K, Patidar V , Sud K K. A random bit generator using chaotic maps. International Journal of Network Security, 2010, 10 (1): 32?38 3. He B, Luo L Y, Xiao D. A method for generating S-box based on iterating chaotic maps. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22 (1): 89?93 (in Chinese). 4. Kocarev L, Tasev Z. Public-key encryption based on Chebyshev maps. Proceedings of the International Symposium on Circuits and Systems (ISCAS’03), Vol 3, May 25?28, 2003, Bangkok, Thailand. Los Alamitos, CA, USA: IEEE Computer Society, 2003: 28?31 5. Bergamo P, D’Arco P, Santis A D, et al. Security of public-key cryptosystems based on Chebyshev polynomials. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(7): 1382?1393 6. Fee G J, Monagan M B. Cryptography using Chebyshev polynomials. Proceedings of the Maple Summer Workshop (MSW’04), Jul 11?14, 2004, Burnaby, Canada. 2004: 15p 7. Kocarev L, Tasev Z, Amato P, et al. Encryption process employing chaotic maps and digital signature process. United States Patent 6892940. 2005 8. Kocarev L, Makraduli J, Amato P. Public-key encryption based on Chebyshev polynomials. Circuits, Systems, and Signal Processing, 2005, 24(5): 497?571 9. Ning H Z, Liu Y, He D Q. Public key encryption algorithm based on Chebyshev polynomials over finite fields. Proceedings of the 8th International Conference on Signal Processing (ICSP’06): Vol 4, Nov 16?20, 2006, Beijing, China. Piscataway, NJ, USA: IEEE, 2006: 4p 10. Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 1985, 31(4): 469?472 11. Lima J B, Campello de Souza R M, Panario D. Security of publickey cryptosystems based on Chebyshev polynomials over prime finite fields. Proceedings of the IEEE International Symposium on Information Theory (ISIT’08), Jul 6?11, 2008, Toronto, Canada. Piscataway, NJ, USA: IEEE, 2008: 1843?1847 12. Wang D H, Yang H Z, Yu F S, et al. A new key exchange scheme based on Chebyshev polynomials. Proceedings of the Congress on Image and Signal Processing (CISP’08), May 27?30, 2008, Sanya, China. Piscataway, NJ, USA: IEEE, 2008: 124?127 13. Wang D H, Hu Z G, Tong Z J, et al. An identity authentication system based on Chebyshev polynomials. Proceedings of the 1st International Conference on Information Science and Engineering (ICISE’09), Dec 26?28, 2009, Nanjing, China. Piscataway, NJ, USA: IEEE, 2010: 1648?1650 14. Wang X Y, Zhao J F. An improved key agreement protocol based on chaos. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 4052?4057 15. Menezes A J, Van Oorschot P C, Vanstone S A. Handbook of applied cryptography. New York, NY, USA: CRC Press, 1997 16. Muller S. On the Computation of square roots in finite fields. Designs, Codes and Cryptography, 2004, 31 (3): 301?312 |