2. Klapper A. The vulnerability of geometric sequences based on fields of odd characteristic. Journal of Cryptology, 1994, 7(1): 33-51
3. Chan A H , Games R A. On the linear span of binary sequences obtained from finite geometries. Advances in Cryptology: Proceedings of the 4th Annual International Cryptology Conference (Crypto’'86), Aug 11-15, 1986, Santa Barbara, CA, USA. LNCS 263. Berlin, Germany: Springer-Verlag, 1987: 405-417
4. Shamir A. On the generation of cryptographically strong pseudorandom sequences. ACM Transactions on Computer Systems, 1983, 1 (1): 38-44
5. Blum L, Blum M, Shub M. A simple unpredictable pseudo-random number generator. SIAM Journal on Computing, 1986, 15(2): 364-383
6. Cusick T W. Properties of the pseudorandom number generator. IEEE Transactions on Information Theory, 1995, 41(4): 1155-1159
7. Friedlander J B, Pomerance C, Shparlinski I E. Period of the power generator and small values of Carmuchael’s function. Mathematics of Computation, 2001, 70: 1591-1605
8. Blake I F, Gao S H, Mullin R C. Explicit factorization of over Fp with prime . Applicable Algebra in Engineering, Communication and Computing , 1993, 4(2): 89-94
9. Kaida T, Uehara S, Imamura K. An algorithm for the k-error linear complexity of sequences over GF(pm) with period pn, p a prime. Information and Computation, 1999, 151(1/2): 134-147
10. Xiao G Z , Wei S M, Lam K Y, et al. A fast algorithm for determining the linear complexity of a sequence with period over GF(q). IEEE Transactions on Information Theory, 2000, 46(6): 2203-2206
11. Meier W, Staelbach O. The self-shrinking generator. Advances in Cryptology: Proceedings of Workshop on the Theory and Application of Cryptographic Techniques (EUROCRYPT’94), May 9-12, 1994, Perugia, Italy. LNCS 950. Berlin, Germany: Springer-Verlag, 1995: 205-214
12. Etzion T. Linear complexity of de Bruijn sequences-old and new results. IEEE Transactions on Information Theory, 1999, 45(2): 693-698 |