1. GANTI R K, YE F, LEI H. Mobile crowdsensing: Current state and future challenges. IEEE Communications Magazine, 2011, 49(11): 32-39.
2. LIN L, LI J X, CHEN F, et al. Road traffic speed prediction: A probabilistic model fusing multi-source data. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(7): 1310-1323.
3. MAISONNEUVE N, STEVENS M, NIESSEN M E, et al. NoiseTube: Measuring and mapping noise pollution with mobile phones. Information Technologies in Environmental Engineering, 2009, 2(6): 215-228.
4. MU B, LI S, YUAN S J. QoS-aware cloud service selection based on uncertain user preference. Rough Sets and Knowledge Technology: Proceedings of the 9th International Conference on Rough Sets and Knowledge Technology (RSKT’14), 2014, Oct 24-26, Shanghai, China. LNAI 8818. Berlin, Germany: Springer, 2014: 589-600.
5. ZHANG D Q, XIONG H Y, WANG L Y, et al. CrowdRecruiter: Selecting participants for piggyback crowdsensing under probabilistic coverage constraint. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp'14), 2014, Sept 13-17, Seattle, WA, USA. New York, NY, USA: ACM, 2014: 703-714.
6. PAPADIAS D, SHEN Q M, TAO Y F, et al. Group nearest neighbor queries. Proceedings of the 20th International Conference on Data Engineering, 2004, Mar 30-Apr 2, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2004: 301-312.
7. GUO B, CHEN H H, HAN Q. Worker-contributed data utility measurement for visual crowd sensing systems. IEEE Transactions on Mobile Computing, 2017, 16(8): 2379-2391.
8. ZHANG C, KAMIYAMA N. Data quality maximization for mobile crowdsensing. Proceedings of the 2020 IEEE/IFIP Network Operations and Management Symposium (NOMS’20), 2020, Apr 20-24, Budapest, Hungary. Piscataway, NJ, USA: IEEE, 2020: 7p.
9. YANG S, WU F, CHEN G H. On designing most informative user selective methods for mobile crowdsensing. Chinese Journal of Computers, 2020, 43(3): 31-44 (in Chinese).
10. AZMY S B, ZORBA N, HASSANEIN H S. Quality estimation for scarce scenarios within mobile crowd sensing systems. IEEE Internet of Things Journal, 2020, 7(11): 10955-10968.
11. GUO W Z, ZHU W P, YU Z Y, et al. A survey of task allocation: Contrastive perspectives from wireless sensor networks and mobile crowdsensing. IEEE Access, 2019, 7: 78406-78420.
12. DU Y, SUN Y E, HUANG H, et al. Bayesian co-clustering truth discovery for mobile crowd sensing systems. IEEE Transactions on Industrial Informatics, 2019, 16(2): 1045-1057.
13. XIONG J B, MA R, NIU B, et al. Privacy protection incentive mechanism based on user-union matching in mobile crowdsensing. Journal of Computer Research and Development, 2018, 55(7): 1359-1370 (in Chinese).
14. ZHOU T Q, CAI Z P, CHEN Y Y, et al. Improving data credibility for mobile crowdsensing with clustering and logical reasoning. Cloud Computing and Security : Proceedings of the 2nd International Conference on Cloud Computing and Security (ICCCS’16), 2016, Jul 29-31, Nanjing, China. LNISA 10040. Berlin, Germany: Springer, 2016: 138-150.
15. JI J J, GUO Y N, GONG D W, et al. MOEA/D-based participant selection method for crowdsensing with social awareness. Applied Soft Computing, 2020, 87: Article 105981.
16. SUN H B, TAO D. Data-quality-aware participant selection mechanism for mobile crowdsensing. Wireless Sensor Networks : Proceedings of the 13th Wireless Sensor Networks (CWSN’19), 2019, Oct 12-14, Chongqing, China. CCIS 1101. Berlin, Germany: Springer, 2019: 348-359
17. ZHOU T Q, XIAO B, CAI Z P, et al. A utility model for photo selection in mobile crowdsensing. IEEE Transactions on Mobile Computing, 2021, 20(1): 48-62.
18. COVER T M, THOMAS J A. Elements of information theory. New York, NY, USA: John Wiley and Sons, 2006.
19. FIRDOSE S, LOPES W, MOREIRA W, et al. CRAWDAD dataset copelabs/usense (v. 2017-01-27). https://crawdad.org/copelabs/usense/20170127.
20. CHEN Y, LIU Y N, SHAO Z H. Data quality evaluation method based on the error-eliminating decision-making theory. Journal of Harbin Engineering University, 2018, 39(12): 2040-2045 (in Chinese).