1. SARRIGIANNIS I, RAMANTAS K, KARTSAKLI E, et al. Online VNF lifecycle management in an MEC-enabled 5G IoT architecture. IEEE Internet of Things Journal, 2020, 7(5): 4183-4194.
2. LEIVADEAS A, KESIDIS G, IBNKAHLA M, et al. VNF placement optimization at the edge and cloud. Future Internet, 2019, 11(3): 69-89.
3. HE W C, GUO S Y, LIANG Y, et al. Markov approximation method for optimal service orchestration in iot network. IEEE Access, 2019, 7: 49538-49548.
4. SUN G, ZHOU R, SUN J, et al. Energy-efficient provisioning for service function chains to support delay-sensitive applications in network function virtualization. IEEE Internet of Things Journal, 2020, 7(7): 6116-6131.
5. ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 2017, 34(6): 26-38.
6. Jemaa F B, Pujolle G, Pariente M. QoS-aware VNF placement optimization in edge-central carrier cloud architecture. Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM’16), 2016, Dec 4-8, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2016: 7p.
7. VAN LINGEN F, YANNUZI M, JAIN A, et al. The unavoidable convergence of NFV, 5G, and fog: A model-driven approach to bridge cloud and edge. IEEE Communications Magazine, 2017, 55(8): 28-35.
8. WANG Y X, LU P, LU W, et al. Cost-efficient virtual network function graph (vNFG) provisioning in multidomain elastic optical networks. Journal of Lightwave Technology, 2017, 35(13): 2712-2723.
9. KUO T W, LIOU B H, LIN K C J, et al. Deploying chains of virtual network functions: On the relation between link and server usage. IEEE/ACM Transactions on Networking, 2018, 26(4): 1562-1576.
10. KAR B, WU E H, LIN Y, et al. Energy cost optimization in dynamic placement of virtualized network function chains. IEEE Transactions on Network and Service Management, 2018, 15(1): 372-386.
11. KOUAH R, ALLEG A, LARABA A, et al. Energy-aware placement for IoT-service function chain. Proceedings of the IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD’18), 2018, Sept 17-19, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2018: 7p.
12. SUN G, LI Y Y, YU H F, et al. Energy-efficient and traffic-aware service function chaining orchestration in multi-domain networks. Future Generation Computer Systems, 2019, 91: 347-360.
13. CHEN G, HE W, LIU J, et al. Energy-aware server provisioning and load dispatching for connection-intensive Internet services. Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI'08), 2008, Apr 16-18, San Francisco, CA, USA. Berkeley, CA, USA: USENIX Association, 2008: 337-350.
14. SHAW R, HOWLEY E, BARRETE E, et al. An energy efficient anti-correlated virtual machine placement algorithm using resource usage predictions. Simulation Modelling Practice and Theory, 2019, 93: 322-342.
15. QIAN H Y, MEDHI D. Server operational cost optimization for cloud computing service providers over a time horizon. Proceedings of the 11th USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE’11), 2011, Mar 29, Boston, MA, USA. Berkeley, CA, USA: USENIX Association, 2011: 4p.
16. TRAN N H, TRAN D H, REN S, et al. How geo-distributed data centers do demand response: A game theoretic approach. IEEE Transactions on Smart Grid, 2016, 7(2): 937-947.
17. FU X Y, YU F R, WANG J Y, et al. Dynamic service function chain embedding for NFV-enabled IoT: A deep reinforcement learning approach. IEEE Transactions on Wireless Communications, 2020, 19(1): 507-519.
18. OUYANG C, WEI Y K, LENG S, et al. Service chain performance optimization based on middlebox deployment. Proceedings of the IEEE 17th International Conference on Communication Technology (ICCT’17), 2017, Oct 27-30, Chengdu, China. Piscataway, NJ, USA: IEEE, 2017: 1947-1952.
19. HEGYI A, FLINCK H, KETYKO I, et al. Application orchestration in mobile edge cloud: Placing of iot applications to the edge. Proceedings of the IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W’16), 2016, Sept 12-16, Augsburg, Germany. Piscataway, NJ, USA: IEEE, 2016: 230-235.
20. NAM Y, SONG S, CHUNG J M, et al. Clustered NFV service chaining optimization in mobile edge clouds. IEEE Communications Letters, 2017, 21(2): 350-353.
21. FADLULLAH Z M, TANG F, MAO B, et al. On intelligent traffic control for large-scale heterogeneous networks: A value matrix-based deep learning approach. IEEE Communications Letters, 2018, 22(12): 2479-2482.
22. ZHAO L, WANG J D, LIU J J, et al. Routing for crowd management in smart cities: A deep reinforcement learning perspective. IEEE Communications Magazine, 2019, 57(4): 88-93.
23. QUANG P T A, HADJADJ-AOUL Y, OUTTAGARTS A. A deep reinforcement learning approach for VNF forwarding graph embedding. IEEE Transactions on Network and Service Management, 2019, 16(4): 1318-1331.
24. GUO S Y, DAI Y, XU S Y, et al. Trusted cloud-edge network resource management: DRL-driven service function chain orchestration for IoT. IEEE Internet of Things Journal, 2020, 7(7): 6010-6022.