1. Zhang H J, Jiang C X, Bennis M, et al. Heterogeneous ultra dense networks: Part 2. IEEE Communications Magazine, 2018, 56(6): 12 -13
2. Zhang T Y, Chiang Y H, Borcea C, et al. Learning-based offloading of tasks with diverse delay sensitivities for mobile edge computing. Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM’19), 2019, Dec 9 -13, Waikoloa, HI, USA. Piscataway, NJ, USA: IEEE, 2019: 1 -6
3. Chen M, Hao Y X. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected
Areas in Communications, 2018, 36(3): 587 -597
4. Andrews J G, Buzzi S, Choi W, et al. What will 5G be?. IEEE Journal on Selected Areas in Communications, 2014, 32 (6): 1065 -1082
5. Tran T X, Pompili D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856 -868
6.Sardellitti S, Merluzzi M, Barbarossa S. Optimal association of mobile users to multi-access edge computing resources. Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops’18), 2018, May 20 - 24, Kansas City, MO, USA. Piscataway, NJ, USA: IEEE, 2018: 1 -6
7. He Y, Zhao N, Yin H X. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning
approach. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44 -55
8. -Tan Z Y, Yu F R, Li X, et al. Virtual resource allocation for heterogeneous services in full duplex-enabled SCNs with mobile
edge computing and caching. IEEE Tranactions on Vehicular Technology, 2018, 67(2): 1794 -1808
9. Wang L, Huang P Q, Wang K Z, et al. RL-based user association and resource allocation for multi-UAV enabled MEC. Proceedings of the 15th International Wireless Communications & Mobile Computing Conference ( IWCMC’19 ), 2019, Jun 24 - 28,
Tangier, Morocco. Piscataway, NJ, USA: IEEE, 2019: 741 -746
10. Qian Y W, Wang F F, Li J, et al. User association and path planning for UAV-aided mobile edge computing with energy restriction. IEEE Wireless Communications Letters, 2019, 8(5): 1312 -1315
11. Zhou J Z, Zhang X, Wang W B. Joint resource allocation and user association for heterogeneous services in multi-access edge
computing networks. IEEE Access, 2019, 7: 12272 -12282
12. -Merluzzi M, Di Lorenzo P, Barbarossa S. Dynamic joint resource allocation and user assignment in multi-access edge computing. Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing ( ICASSP’19), 2019, May 12 -17, Brighton, UK. Piscataway, NJ, USA: IEEE, 2019: 4759 -4763
13. Zaw C W, Hong C S. A distributed resource allocation game with task centric association in MEC enabled ultra-dense networks.
Collection of Academic Papers Published by Korea Information Science Association, 2019: 1321 -1323
14.Seng S M, Li X, Ji H, et al. Joint access selection and heterogeneous resources allocation in UDNs with MEC based on non-orthogonal multiple access. Proceedings of the 2018 IEEE International Conference on Communications Workshops ( ICC
Workshops’18), 2018, May 20 - 24, Kansas City, MO, USA. Piscataway, NJ, USA: IEEE, 2018: 1 -6
15. Pan Y J, Chen M, Yang Z H, et al. Energy-efficient NOMA-based mobile edge computing offloading. IEEE Communications Letters, 2019, 23(2): 310 -313
16. Yang Y J, Chen X, Chen Y, et al. Green-oriented offloading and resource allocation by reinforcement learning in MEC. Proceedings of the 2019 IEEE International Conference on Smart Internet of Things ( SmartIoT’19 ), 2019, Aug 9 - 11, Tianjin, China. Piscataway, NJ, USA: IEEE, 2019: 378 -382
17. Guo F X, Ma L D, Zhang H L, et al. Joint load management and resource allocation in the energy harvesting powered small cell
networks with mobile edge computing. Proceedings of the 2018 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS’18), 2018, Apr 15 - 19, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2018: 299 -304
18. Li J, Gao H, Lü T J, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC. Proceedings of the 2018 IEEE Wireless Communications and Networking Conference ( WCNC’18 ), 2018, Apr 15 - 18, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2018: 1 -6
19. Bi S Z, Zhang Y J. Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Transactions on Wireless Communications, 2018, 17(6): 4177 -4190
20. Zhang W W, Wen Y G, Guan K, et al. Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions on Wireless Communications, 2013, 12(9): 4569 -4581
21. Wang Y T, Sheng M, Wang X J, et al. Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Transactions on Communications, 2016, 64(10): 4268 -4282
22. Yu Y H, Zhang J, Letaief K B. Joint subcarrier and CPU time allocation for mobile edge computing. Proceedings of the 2016 IEEE Global Communications Conference ( GLOBECOM’16 ), 2016, Dec 4 -8, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2016: 1 -6
23. Fan Q, Ansari N. Green energy aware user association in heterogeneous networks. Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, 2016, Apr 3 - 6, Doha, Qatar. Piscataway, NJ, USA: IEEE, 2016: 1 -6
24. Wang L F, Wong K K, Jin S, et al. A new look at physical layer security, caching, and wireless energy harvesting for heterogeneous ultra-dense networks. IEEE Communications Magazine, 2018, 56(6): 49 -55
25.Merluzzi M, Di Lorenzo P, Barbarossa S. Dynamic resource allocation for wireless edge machine learning with latency and accuracy guarantees. Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’20), 2020, May 4 - 8, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2020: 9036 -9040
|