1. Anderson C H. Filter-subtract-decimate hierarchical pyramid signal analyzing and synthesizing technique. USP 4718104, 1988-01-05.
2. Li M J, Dong Y B, Wang X L. Image fusion algorithm based on gradient pyramid and its performance evaluation. Applied Mechanics and Materials, 2014, 525: 715-718.
3. Mao R, Fu X S, Niu P J, et al. Multi-directional laplacian pyramid image fusion algorithm. Proceedings of the 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE'18), 2018, Sept 14-16, Huhhot, China. Piscataway, NJ, USA: IEEE, 2018, 569-572.
4. Uniyal N, Verma S K. Image fusion using morphological pyramid consistency method. International Journal of Computer Applications. 2014, 95(25): 34-38.
5. Wang K P, Zheng M Y, Wei H Y, et al. Multi-modality medical image fusion using convolutional neural network and contrast pyramid. Sensors, 2020, 20(8): 124-127.
6. Parmar K, Kher R K, Thakkar F N. Analysis of CT and MRI image fusion using wavelet transform. Proceedings of th e 2012 International Conference on.Communication Systems and Network Technologies (CSNT'12), 2012, May 11-13, Rajkot, India. Piscataway, NJ, USA: IEEE, 2012: 4p.
7. Rockinger O. Image sequence fusion using a shift-invariant wavelet transform.Proceeding of the 1997 IEEE International Conference on Image Processing: Vol 3, 1997, Oct 26-29, Santa Barbara, CA, USA. Piscataway, NJ, USA: IEEE, 1997: 288-291.
8. Eckhorn R, Reitboeck H J, Arndt M, et al. Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Computation, 1990, 2(3): 293-307.
9. Johnson J L, Padgett M L. PCNN models, and application. IEEE Trans on Neural Networks, 1999, 10(3): 480-498.
10. Ranganath H S, Kuntimad G, Johnson J L. Pulse coupled neural networks for image processing. Proceedings of the IEEE Southeastcon'95 Visualize the Future, 1995, Mar 26-29, Raleigh, NC, USA. Piscataway, NJ, USA: IEEE, 1995: 37-43.
11. Wang Z B, Ma Y D. Dual-channel PCNN and its application in the field of image fusion. Proceedings of the 3rd International Conference on Natural Computation (ICNC'07), 2007, Aug 24-27, Haikou, China. Piscataway, NJ, USA: IEEE, 2007.
12. Wang Z B, Ma Y D. Medical image fusion using m-PCNN. Information Fusion. 2008, 9(2): 176-185.
13. Fu C Y, Guo L. Hyperspectral image fusion based on wavelet transform and multi-channel pulse coupled neural network. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(3): 838-843 (in Chinese)
14. Joglekar Y N, Wolf S J. The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 2009, 30(4): 661-675.
15. Shin, S, Kim K, Kang S M. Memristor applications for programmable analog ICs. IEEE Trans on Nanotechnology, 2011, 10(2): 266-274.
16. Hu X F, Duan S K, Wang L D, et al. Memristive crossbar array with applications in image processing. Science China: Information Sciences, 2012, 55(2): 461-472.
17. Dong Z K, Lai C S, Qi D L, et al. A general memristor-based pulse coupled neural network with variable linking coefficient for multi-focus image fusion. Neurocomputing, 2018, 308: 172-183.
18. Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters, 2010, 10(4): 1297-1301.
19. Indiveri G, Linares-Barranco B, Legenstein R, et al. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology, 2013, 24(38): Article 384010.
20. Xie X D, Wen S P, Zeng Z G, et al. Memristor-based circuit implementation of pulse-coupled neural network with dynamical threshold generators. Neurocomputing, 2018, 284: 10-16.
21. Zhu S, Wang L D, Duan S K, Memristive pulse coupled neural network with applications in medical image processing. Neurocomputing, 2017, 277: 149-157.
22. Chua L O, Memristor--The missing circuit element. IEEE Trans on Circuit Theory, 1971, 18(5): 507-519.
23. Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453(7191): 80-83.
24. Gale E. Uniform and piece-wise uniform fields in memristor models. Computer Science, arXiv:1404.5581, 2014.
25. Jaynes E T. Information theory and statistical mechanics. Physical Review Journals Archive, 1957, 106: 620-630.
26. Schönfeldt J C. Applications of the maximum entropy principle to time dependent processes. Master Thesis. Pretoria, South African: University of Pretoria, 2008.
27. Xydeas C S, Petrovic V. Objective image fusion performance measure. Electronics Letters, 2000, 36(4): 308-309.
28. Xiang T Z, Yan L, Gao R R. A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain. Infrared Physics & Technology, 2015, 69: 53-61.
29. Qu X B, Yan J W, Xiao H Z, et al. Image fusion algorithm based on spatial frequency excitation in non-downsampling contourlet domain. Acta Automatica Sinica, 2008, 34(12): 1508-1514.
|