1. Hightower J , Borriello G. Location Systems for Ubiquitous Computing. Computer, 2001, 34(8):57-66
2. Hu C, Tian Y, Yang X, et al. Background Ionosphere Effects on Geosynchronous SAR Focusing: Theoretical Analysis and Verification Based on the BeiDou Navigation Satellite System (BDS). IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(3):1143-1162
3. Yang Z, Wang Y J, Chen G L, et al. Re⁃search on high precision indoor positioning technology of UWB. Journal of navigation and positioning,2014, 2 (4):31⁃35
4. Yu K, Montillet J P, Rabbachin A, et al. UWB Location and Tracking for Wireless Embedded Networks. Signal Processing, 2006, 86(9):2153-2171
5. Ye T , Walsh M , Haigh P , et al. An Experimental Evaluation of IEEE 802.15.4a Ultra Wide Band Technology for Precision Indoor Ranging. International Journal of Ambient Computing & Intelligence, 2012, 4(2):48-63
6. Haneda K, Richter A, Molisch A F. Modeling the Frequency Dependence of Ultra-Wideband Spatio-Temporal Indoor Radio Channels. IEEE Transactions on Antennas & Propagation, 2012, 60(6):2940-2950
7. Wang C Q, Xu A G, Sui X, A Method of NLOS error inhibition for UWB ranging. Journal of Navigation and Positioning,2017,5(3):24-27+32
8. Xiao Z, Li W G, Sun W, et al. A Novel UWB Localization Scheme for NLOS under Multipath Channel. IEEE Beijing Section.Proceedings of 2008 9th International Conference on Signal Processing(ICSP'2008), 2008, Beijing,China. 2008:5
9. Jiang X Y, Zhang H S, Wang W. NLOS error mitigation with information fusion algorithm for UWB ranging systems. The Journal of China Universities of Posts and Telecommunications, 2012(02):22–29
10. Yang F F. Research and implementation of Wireless Location Algorithm Based on UWB. Shenyang: Northeastern University, 2014
11. Zhu Y L. Research and Application of the Algorithm for the indoor Positioning Based on UWB.Jinan:Shandong University, 2014
12. Yang G S , Zhao L H , Dai Y P, et al. A KFL-TOA UWB indoor positioning method for complex environment. Chinese Automation Congress (CAC), 2017,Jinan,China. 2017:3010-3014
13. Gao H B. Research on Indoor Lacation Algorithm Based on Deep Learning. Chengdu,China: School of Electronic Engineering, 2016
|