1. |
Chapelle O. Training a support vector machine in the primal. Neural Computation, 2007, 19(5): 1155-1178
|
|
2. Scholkop B. An introduction to support vector machines. Recent Advances and Trends in Nonparametric Statistics, 2003, 32(8): 3-17
|
|
3. Vapnik V N. The nature of statistical learning theory. New York, NY, USA: Springer,1995
|
|
4. Vapnik V N. Statistical learning theory. New York, NY, USA: Springer, 1998
|
|
5. Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification. Computational Optimization and Applications, 2001, 20(1): 5-22
|
|
6. Mangasarian O L, Wild E W. Multi-surface proximal support vector classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74
|
|
7. Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910
|
|
8. Chen W J, Shao Y H, Hong N. Laplacian smooth twin support vector machine for semi-supervised classification. International Journal of Machine Learning and Cybernetics, 2014, 5(3): 459-468
|
|
9. Nasiri J A, Moghadam Charkari N, Jalili S. Least squares twin multi-class classification support vector machine. Pattern Recognition, 2015, 48(3): 984-992
|
10 |
Chen W J, Shao Y H, Li C N, et al. MLTSVM: A novel twin support vector machine to multi-label learning. Pattern Recognition, 2016, 52: 61-74
|
11 |
Rastogi R, Sharma S, Chandra S. Robust parametric twin support vector machine for pattern classification. Neural Processing Letters, 2018, 47: 293-323
|
12 |
Xu Y T, Yang Z J, Pan X L. A novel twin support-vector machine with pinball loss. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2): 359-370
|
13 |
Ye Y F, Bai L, Hua X Y, et al. Weighted lagrange ε-twin support vector regression. Neurocomputing, 2016, 197: 53-68
|
14 |
Kumar M A, Gopal M. Application of smoothing technique on twin support vector machines. Pattern Recognition Letters, 2008, 29(13): 1842-1848
|
15 |
Peng X J, Xu D. Twin support vector hypersphere (TSVH) classifier for pattern recognition. Neural Computing and Applications, 2014, 24(5): 1207-1220
|
16 |
Xu Y T, Guo R. A twin hyper-sphere multi-class classification support vector machine. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2014, 27(4): 1783-1790
|
17 |
Zhang J, Fan X H, Ban D K. Smooth support vector machine based on circular tangent function. The Journal of China Universities of Posts and Telecommunications, 2016, 23(1): 68-72
|
18 |
Wu Q, Fan J L. Smooth support vector machine based on piecewise function. The Journal of China Universities of Posts and Telecommunications, 2013, 20(5): 122-128
|
19 |
Yang J J, Zhu H X, Choi T, et al. Smoothing and mean covariance estimation of functional data with a Bayesian hierarchical model. Statistics, 2016, 11(3): 649-670
|
20 |
Van Halder Y, Sanderse B, Koren B. An adaptive minimum spanning tree multi-element method for uncertainty quantification of smooth and discontinuous responses. arXiv.org e-prints, arXiv:1803.06833, 2018
|
21 |
Chawla N V, Bowyer K W, Hall L O, et al. Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357
|
22 |
Musicant D R. NDC: Normally distributed clustered datasets. www.cs.wisc.edu/∼musicant/data/ndc.1998
|
23 |
Wang Z, Shao Y H, Wu T R. A GA-based model selection for smooth twin parametric-margin support vector machine. Pattern Recognition, 2013, 46(8): 2267-2277
|
24 |
Blake C, Merz C. UCI repository for machine learning databases. Irvine, CA, USA: Department of Information and Computer Sciences, University of California, Irvine, 1998
|
25 |
Demišar J, Schuurmans D. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 2006, 7: 1-30
|