References
1. Krim H, Viberg M. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, 13(4): 67 -94
2. Zhang Y, Ng B P. MUSIC-like DOA estimation without estimating the number of sources. IEEE Transactions on Signal Processing, 2010, 58(3): 1668 -1676
3. Si W J, Lan X Y, Zou Y. Novel high-resolution DOA estimation using subspace projection method. The Journal of China Universities of Posts and Telecommunications, 2012, 19(4): 110 -
116
4. Zhang D, Zhang Y, Zheng G, et al. Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm. Electronics Letters, 2017, 53(18): 1277 -1279
5. Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984 -995
6. Shahbazpanahi S, Valaee S, Bastani M H. Distributed source localization using ESPRIT algorithm. IEEE Transactions on Signal Processing, 2001,49(10): 2169 -2178
7. Lin J, Ma X, Yan S, et al. Time-frequency multi-invariance ESPRIT for DOA estimation. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 770 -773
8. Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation. Signal Processing, 1995, 42(2): 121 -138
9. Wu Y, Liao G, So H C. A fast algorithm for 2-D direction-of-arrival estimation. Signal Processing, 2003, 83(8): 1827 -1831
10. Tayem N, Kwon H M. Azimuth and elevation angle estimation with no failure and no eigen decomposition. Signal Processing, 2006, 86(1): 8 -16
11. Li J, Zhang X, Chen H. Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method. Signal Processing, 2012, 92(12): 3032 -3038
12. Chen H, Hou C, Wang Q, et al. Improved azimuth/ elevation angle estimation algorithm for three-parallel uniform linear arrays. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 329 -332
13. Dong Y Y, Dong C X, Xu J, et al. Computationally efficient 2-D DOA estimation for L-shaped array with automatic pairing. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1669 -1672
14. Chintagunta S, Palanisamy P. 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors. Signal Processing, 2018, 147: 163 -172
15. Yang X P, Wu X C, Li S, et al. A fast and robust DOA estimation method based on JSVD for co-prime array. IEEE Access, 2018(6): 41697 -41705
16. Dong Y Y, Dong C X, Liu W, et al. Robust DOA estimation for sources with known waveforms against doppler shifts via oblique projection. IEEE Sensors Journal, 2018, 18(16): 6735 -6742
17. Tayem N, Majeed K, Hussain A A. Two-dimensional DOA estimation using cross-correlation matrix with L-shaped array. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1077 -1080
18. Wong K T, Zoltowski M D. Extended-aperture underwater acoustic multisource azimuth/ elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE Journal of Oceanic Engineering, 1997, 22(4): 659 -672
19. He J, Liu Z. Extended aperture 2-D direction finding with a two-parallel-shape-array using propagator method. IEEE Antennas and Wireless Propagation Letters, 2009(8): 323 -327
20. Kay S M. Fundamentals of statistical signal processing. In Prentice Hall PTR, New Jersey, USA, 1993
21. Zoltowski M D, Wong K T. Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid. IEEE Transactions on Signal Processing, 2000, 48(8): 2205 -2210
22. Yin Q Y, Zou L H, Newcomb R. A high resolution approach to 2-D signal parameter estimation-DOA matrix method. Journal of China Institute of Communications, 1991(4): 1 -7 |