1. Hartenstein H, Laberteaux L P. A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 2008, 46(6): 164–171
2. Cheng X, Yang L Q, Shen X. D2D for intelligent transportation systems: A feasibility study. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 1784–1793
3. Cheng X, Hu X Y, Yang L Q, et al. Electrified vehicles and the smart grid: The ITS perspective. IEEE Transactions on Intelligent Transportation Systems, 2014,15(4): 1388–1404
4. Lakkavalli S, Negi A, Singh S. Stretchable architectures for next generation cellular networks. Proceedings of the 2003 International Symposium on Advanced Radio Technologies (ISART 03), Mar 4-7, 2003, Boulder, CO, USA. 2003: 59–65
5. Telatar I. Capacity of multiple-antenna Gaussian channels. European Transactions on Telecommunications, 1999, 10(6): 585–595
6. Gesbert D, Shafi M, Shiu D S, et al. From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 2003, 21(3): 281–302
7. Akki A S, Haber F. A statistical model of mobile-to-mobile land communication channel. IEEE Transactions on Vehicular Technology, 1986, 35(1): 2–10
8. Akki A S. Statistical properties of mobile-to-mobile land communication channels. IEEE Transactions on Vehicular Technology, 1994, 43(4): 826–831
9. Pätzold M, Hogstad B O, Youssef N, et al. A MIMO mobile-to-mobile channel model: Part I—The reference model. Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’05): Vol 1, Sept 11-14, 2005, Berlin, Germany. Piscataway, NJ, USA: IEEE, 2005: 573–578
10. Hogstad O, Pätzold M, Youssef N, et al. A MIMO mobile-to-mobile channel model: Part II—The simulation model. Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’05): Vol 1, Sept 11-14, 2005, Berlin, Germany. Piscataway, NJ, USA: IEEE, 2005: 562–567
11. Zaji? A G, Stüber G L. Space-time correlated mobile-to-mobile channels: Modelling and simulation. IEEE Transactions on Vehicular Technology, 2008, 57(2): 715–726
12. Cheng X, Wang C X, Laurenson D I, et al. An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 2009, 8(9): 4824–4835
13. Pa?tzold M, Hogstad B O. A wideband MIMO channel model derived from the geometric elliptical scattering model. Proceedings of the 3rd International Symposium on Wireless Communication System (ISWCS’06), Sept 6-8, 2006, Valencia, Spain. Piscataway, NJ, USA: IEEE, 2006: 138–144
14. Yoo Sangjo, Yoo Sujung, Lee J, et al. Modeling and characteristics of mobile-to-mobile wideband MIMO channel based on the geometrical multi-radii two-rings with specified frequency selectivity. Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP’12), Mar 26-30, 2012, Prague, Czech. Piscataway, NJ, USA: IEEE, 2012: 2030–2034
15. Cheng X, Yao Q, Wen M W, et all. Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 434–447
16. Zaji? A G, Stüber G L. Three-dimensional modeling, simulation, and capacity analysis of space-time correlated mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 2008, 8(3): 1260–1274
17. Zaji? A G, Stüber G L, Pratt T G, et al. Wideband MIMO mobile-to-mobile channels: Geometry-based statistical modeling with experimental verification. IEEE Transactions on Vehicular Technology, 2009, 58(2): 517–534
18. Zaji? A G, Stüber G L. Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Wireless Communication, 2009, 8(3): 1260–1274
19. Yuan Y, Wang C X, Cheng X, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels. IEEE Transactions on Wireless Communications, 2014, 13(1): 298–308
20. Talha B, Pätzold M. A geometrical three-ring-based model for MIMO mobile-to-mobile fading channels in cooperative networks. EURASIP Journal on Advances in Signal Processing, 2011: 892871
21. Nurmela V, Karttunen A, Roivainen A. Mobile and wireless communications Enablers for the Twenty-twenty (2020) Information Society. Deliverable D1.4, V1.0, ICT-317669, METIS project. 2015
22. Zhao X W, Liang X L, Li S, et al. Mobile-to-mobile wideband MIMO channel realization by using a two-ring geometry-based stochastic scattering model. Wireless Personal Communications, 2015, 84(4): 2445–2465
23. Liu L F, Oestges C, Poutanen J, et al. The COST 2100 MIMO channel model. IEEE Wireless Communications, 2012, 19(6): 92–99
24. Zhao X W, Liang X L, Li S, et al. Two-cylinder and multi-ring GBSSM for realizing and modeling of vehicle-to-vehicle wideband MIMO channels. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2787–2799
25. Cheng X, Wang C X, Ai B, et al. Envelope level crossing rate and average fade duration of nonisotropic vehicle-to-vehicle ricean fading channels. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 62–72
Maurer J, Fugen T, Wiesbeck W. Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz. Proceedings of the 55th Vehicular Technology Conference (VTC-Spring’02): Vol 3, May 6-9, 2002, Birmingham, AL, USA. Piscataway, NJ, USA: IEEE, 2002: 1274–1278 |