1. Kauhanen L, Nykopp T, Lehtonen J, et al. EEG and MEG brain-computer interface for tetraplegic patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 190-193
2. Kronegg J, Chanel G, Voloshynovskiy S, et al. EEG-based synchronized braincomputer interfaces: a model for optimizing the number of mental tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(1): 50-58
3. Ahangi A, Karamnejad M, Mohammadi N, et al. Multiple classifier system for EEG signal classification with application to brain-computer interfaces. Neural Computing and Applications, 2013, 23(5): 1319-1327
4. Long J Y, Li Y Q, Yu Z L. A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces. Cognitive Neurodynanics, 2010, 4(3): 207-216
5. Kaiser V, Daly I, Pichiorri F, et al. Relationship between electrical brain responses to motor imagery and motor impairment in stroke. Stroke, 2012, 43(10): 2735-2740
6. Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Progress in Brain Research, 2006, 159: 211-222
7. Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 2006, 31(1): 153-159
8. Hsu W Y, Sun Y N. EEG-based motor imagery analysis using weighted wavelet transform features. Journal of Neuroscience Methods, 2009, 167(2): 310-318
9. Obermaier B, Neuper C, Guger C, et al. Information transfer rate in a five-classes brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001, 9(3): 283-288
10. Torres-García A A, Reyes-García C A, Villaseñor-Pineda L, et al. Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification. Expert Systems with Applications, 2016, 59: 1-12
11. Burke D P, Kelly S P, de Chazal P, et al. A parametric feature extraction and classification strategy for brain-computer interfacing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(1): 12-17
12. Mo H W, Zhao Y Y. Motor imagery electroencephalograph classification based on optimized support vector machine by magnetic bacteria optimization algorithm. Neural Processing Letters, 2016, 44(1): 185-197
13. Nicolas-Alonso L F, Corralejo R, Gomez-Pilar J, et al. Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain-computer interfaces. Neurocomputing, 2015, 159: 186-196
14. Ang K K, Chin Z Y, Wang C C, et al. Filter bank common spatial pattern algorithm on BCI competition IV dataset 2a and 2b. Fontiers in Neuroscience, 2012, DOI:10.3389/fnins.2012.00039
15. Raza H, Cecotti H, Li Y H, et al. Adaptive learning with covariate shift-detection for motor imagery-based brain-computer interface. Soft Computing, 2016, 20(8): 3085-3096
16. Krusienski D J, McFarland D J, Wolpaw J R. An evaluation of autoregressive spectral estimation model order for brain-computer interface applications. Proceedings of the 28th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS’06), Aug 30-Sept 3, 2006, New York, NY, USA. Piscataway, NJ, USA: IEEE, 2006: 1323-1326
17. Lotte F, Congedo M, Lécuyer A, et al. A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 2007, 4(2): R1-R13
18. Suk H I, Lee S W. A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 286-299
19. Zhong M J, Lotte F, Girolami M, et al. Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recognition Letters, 2008, 29(3): 354-359
20. Wang Y J, Zhang Z G, Li Y, et al. BCI competition 2003--Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1081-1086
21. Phothisonothai M, Nakagawa M. EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface. IEICE Transactions on Information and Systems, 2008, E91-D(1): 44-53
22. Coyle D, Prasa G, McGinnity T M. A time-series prediction approach for feature extraction in a brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(4): 461-467
23. Zhang J, Fan X H, Ban D K. Smooth support vector machine based on circular tangent function. The Journal of China Universities of Posts and Telecommunications, 2016, 23(1): 68-72
24. Schlögl A, Lee F, Bischof H, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering, 2005, 2(4): L14-L22
25. Park C, Looney D, ur Rehman N, et al. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1): 10-22
26. Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910
27. Shao Y H, Zhang C H, Wang X B, et al. Improvements on twin support vector machines. IEEE Transactions on Neural Networks, 2011, 22(6): 962-968
28. Qi Z Q, Tian Y J, Shi Y. Robust twin support vector machine for pattern classification. Pattern Recognition, 2013, 46(1): 305-316
29. Tomar D, Agarwal S. Twin support vector machine: a review from 2007 to 2014. Egyptian Informatics Journal, 2015, 16(1): 55-69
30. Naik G R, Kumar D K, Jayadeva. Twin SVM for gesture classification using the surface electromyogram. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2): 301-308
31. Naik G R, Kumar D K, Jayadeva. Hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition. Biomedizinische Technik, 2010, 55(5): 301-307
32. Arjunan S P, Kumar D K, Naik G R. A machine learning based method for classification of fractal features of forearm sEMG using twin support vector machines. Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS’10), Aug 31-Sept 4, 2010, Buenos Aires, Argentina. Piscataway, NJ, USA: IEEE, 2010: 4821-4824
33. Wang T H, Zhao D Y, Feng Y S. Two-stage multiple kernel learning with multiclass kernel polarization. Knowledge-Based Systems, 2013, 48(2): 10-16
34. Tang M Q, Xin Y L. Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Computer Networks, 2016, 5: 1-11 |