1. Armknecht F. Improving fast algebraic attacks. Proceedings of the Fast Software Encryption Workshop (FSE’04), Feb 5-7, 2004, Delhi, India. LNCS 3017. Berlin, Germany: Springer-Verlag, 2004: 65-82
2. Courtois N T, Meier W. Algebraic attacks on stream ciphers with linear feedback. Advances in Cryptology: Proceedings of the 22nd International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’03), May 4-8, 2003, Warsaw, Poland. LNCS 2656. Berlin, Germany: Springer-Verlag, 2003:345-359
3. Armknecht F, Krause M. Algebraic attacks on combiners with memory. Advances in Cryptology: Proceedings of the 23rd Annual International Cryptology Conference (Crypto’03), Aug 17-21, 2003, Santa Barbara, CA, USA. LNCS 2729. Berlin, Germany: Springer-Verlag, 2003: 162-176
4. Batten L.M. Algebraic attacks over GF(q). Progress in Cryptology: Proceedings of the 5th International Conference on Cryptology in India (INDOCRYPT’04), Dec 20-22, 2004, Chennai, India. LNCS 3348. Berlin, Germany: Springer-Verlag, 2004: 84-91
5. Courtois N. Fast algebraic attacks on stream ciphers with linear feedback. Advances in Cryptology: Proceedings of the 23rd Annual International Cryptology Conference (Crypto’03), Aug 17-21, 2003, Santa Barbara, CA, USA. LNCS 2729. Berlin, Germany: Springer-Verlag, 2003: 176-194
6. Meier W, Pasalic E, Carlet C. Algebraic attacks and decomposition of Boolean functions. Advances in Cryptology: Proceedings of the 23rd International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’04), May 2-6, 2004, Interlaken, Switzerland. LNCS 3027. Berlin, Germany: Springer-Verlag, 2004: 474-491
7. Courtois N, Pieprzyk J. Cryptanalysis of block ciphers with overdefined systems of equations. Advances in Cryptology: Proceedings of the 8th International Conference on the Theory and Applications of Cryptology and Information Security (Asiacrypt’02), Dec 1-5, 2002, Queenstown, New Zealand. LNCS 2501. Berlin, Germany: Springer-Verlag, 2002: 267-287
8. Dalai D K, Maitra S, Sarkar S. Basic theory in construction of Boolean functions with maximum possible annihilator immunity. Designs, Codes and Cryptography, Springer Netherlands, 2006, 40(1): 41-58
9. Li N, Qi W F. Symmetric Boolean functions depending on an odd number of variables with maximum algebraic immunity. IEEE Transactions on Information Theory, 2006, 52(5): 2271-2273
10. Qu, L J, Li C, Feng K Q. A note on symmetric Boolean functions with maximum algebraic immunity in odd number of variables. IEEE Transactions on Information Theory, 2007, 53(8): 2908-2910
11. Qu L J, Li C. On the 2m-variable symmetric Boolean functions with maximum algebraic immunity. Science in China Series F: Information Sciences, 2008, 51(2): 120-127
12. Liao Q Y, Feng K Q, Liu F. On the 2m+1-variable symmetric Boolean functions with sub-maximum algebraic immunity 2m-1. Science in China Series A:Mathematics, 2009, 52(1):17-28
13. Qu L J, Feng K Q, Liu F, et al.Constructing symmetric Boolean functions with maximum algebraic immunity. IEEE Transactions on Information Theory, 2009, 55(5): 2406-2412
14. Carlet C. A method of construction of balanced Boolean functions with optimum algebraic immunity. Proceedings of the 2007 International Workshop on Coding and Cryptology, Jun 11-15, 2007, Wuyi Mountain, China. 2007: 25-43
15. Carlet C, Zeng X Y, Li C L, et al. Further properties of several classes of Boolean functions with optimum algebraic immunity. Designs, Codes and Cryptography, 2009, 52(3): 303-338
16. Dong D S, Fu S J, Qu L J, et al. A new construction of Boolean functions with maximum algebraic immunity. Proceedings of the 12th International Conference on Information Security (ISC’09), Sept 7-9, 2009, Pisa, Italy. LNCS 5735. Berlin, Germany: Springer-Verlag, 2009: 177-185
17. Fu S J, Li C, Matssuura K, et al. Construction of rotation symmetric Boolean functions with maximum algebraic immunity. Cryptology and Network Security: Proceedings of the 8th International Conference on Cryptology and Network Security (CANS’09), Dec 12-14, 2009, Kanazawa, Japan. LNCS 58888. Berlin, Germany: Springer-Verlag, 2009: 402-412
18. Li N, Qu L J, Qi W F, et al. On the construction of Boolean functions with optimal algebraic immunity. IEEE Transactions on Information Theory, 2008, 54(3): 1330-1334
19. Sarkar S, Maitra S. Construction of rotation symmetric Boolean functions with maximum algebraic immunity on odd number of variables. Proceedings of the 17th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC’07), Dec 16-20, 2007, Bangalore, India. LNCS 4851. Berlin, Germany: Springer-Verlag, 2007: 271-280
20. Li C L, Zeng X Y, Su W, et al. A class of rotation symmetric Boolean functions with optimum algebraic immunity. Wuhan University Journal of Natural Science, 2008, 13(6):702-706
21. Liu M C, Pei D Y, Du Y S. Identification and construction of Boolean functions with maximum algebraic immunity. Science in China Series F: Information Sciences, 2010, 53(7):1379-1396
22. Armknecht F, Krause M. Constructing single- and multi-output Boolean functions with maximal algebraic immunity. Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP’06), Jul 9-16, 2006, Venice, Italy. LNCS 4052. Berlin, Germany: Springer-Verlag, 2006:180-191
23. Ars G, Faugère J C. Algebraic immunity of functions over finite fields. Proceedings of the 1st Workshop on Boolean Functions: Cryptography and Applications (BFCA’05), Mar 7-8, 2005, Rouen, France. LNCS 5532. Berlin, Germany: Springer-Verlag, 2005: 21-38
24. Feng K Q, Liao Q Y, Yang J. Maximal values of generalized algebraic immunity. Designs, Codes and Cryptography, 2009, 50(2): 243-252
25. Zhang J, Song S C, Du J, et al. On the construction of multi-output Boolean functions with optimal algebraic immunity. Science China: Information Sciences 2012, 55(7): 1617-1623
26. Wang Q C, Peng J, Kan H B, et al. Constructions of cryptographically significant Boolean functions using primitive polynomials. IEEE Transactions on Information Theory, 2010, 56(6): 3048-3053 |