1. Aimin J, Hon K K. WLS design of sparse FIR digital filters. IEEE Transactions on Circuits and Systems, 2013, 60 (1): 125-135
2. Chien C T, Su L L. Design of sparse constrained FIR filter using orthogonal matching pursuit method. Proceedings of the 2012 IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS’12), Nov 4-7, 2012, Taipei, China. Piscataway, NJ, USA: IEEE, 2012: 308-313
3. Proakis J. Digital communication. 4th ed. New York, NY, USA: Mc-Graw Hill, 2001
4. Prodan I, Obara T, Adachi F, et al. Performance of pilot-assisted channel estimation without feedback for broadband ANC system using OFDM access. EURASIP Journal on Wireless Communications and Networking 2012, 315: 10p
5. Lorenz D A. Constructing test instances for basis pursuit denoising. IEEE Transactions on Signal Processing, 2013, 61(5): 1210-1214
6. Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
7. Gurbuz A C, Pilanci M, Arikan O. Expectation maximization based matching pursuit. Proceedings of the 37th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’12), Mar 25-30, 2012, Kyoto, Japan. Piscataway, NJ, USA: IEEE, 2012: 3313-3316
8. Rui W, Wei H, Di R C. The exact support recovery of sparse signals with noise via orthogonal matching pursuit. IEEE Signal Processing Letters, 2013, 20(4): 403-406
9. Wright J, Ganesh A, Yang A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
10. Mohimani H, Babaie-Zadeh M, Jutten C. Complex valued sparse representation based on smooth L0 norm. Proceedings of the 33rd International Conference on Acoustics,Speech, and Signal Processing (ICASSP’08), Mar 31-Apr 4, 2008, Las Vegas, NV, USA, Piscataway, NJ, USA: IEEE, 2008: 3881-3884
11. Hyder M M, Mahata K. An improved smoothed l0 approximation algorithm for sparse representation. IEEE Transaction on Signal Pprocessing, 2010, 58(4): 2194-2205
12. Sakamoto J, Mori Y, Sekioka T. Probability analysis method using fast Fourier transform and its application. Structural Safety, 1997, 19(1): 21-36
13. Candes E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathmatique, 2008, 346(9/10): 589-592
14. Czink N, Yin X, Ozcelik H, et al. Cluster characteristics in a MIMO indoor propagation environment. IEEE Transactions on Wireless Communications, 2007, 6(4): 1465-1475
15. Mazumdar A, Barg A. General constructions of deterministic RIP matrices for compressive sampling. Proceedings of the IEEE International Symposium on Information Theory (ISIT’11), Jul 31-Aug 5, 2011, St Petersburg, Russia. Piscataway, NJ, USA: IEEE, 2011: 678-682
16. Donoho D L, Tsaig Y. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 549-571
17. Boyd S, Vandenberghe L. Convex optimization. Cambridge, UK: Cambridge University Press, 2009
18. Baek J S, Seo J S. Efficient design of block adaptive equalization and diversity combining for space-time block-coded single-carrier systems. IEEE Transactions on Wireless Communications, 2008, 7(7): 2603-2611
19. Tepedelenlioglu C. Maximum multipath diversity with linear equalization in pre-coded OFDM system. IEEE Transactions on Information Theory, 2004, 50(1): 232-235
20. Goupil A, Palicot J. An efficient blind decision feedback equalizer. IEEE Communications Letters, 2010, 14(5): 462-464
21. Yungsoo K, Hwang-Soo L. A decision-feedback equalizer with pattern-dependent feedback for magnetic recording channels. IEEE Transactions on Communications, 2001, 49(1): 9-13
22. Ben S E, Jarboui S, Bouallegue A. An improved differential space-time block coding scheme based on Viterbi algorithm. IEEE Communications Letters, 2013, 17(9): 1707-1709 |