2. Liu Q, Liu Z, Huang M. Study on Internet traffic classification using machine learning. Computer Science, 2010, 37(12): 35-39, 66 (in Chinese)
5. Garcia V, Sanchez J S, Mollineda R A, et al. The class imbalance problem in pattern classification and learning. Proceedings of the 5th Spanish Workshop on Data Mining and Learning (TAMIDA’07), Sep, 2007, Zaragoza, Spain. 2007: 283-291
6. Domingos P. MetaCost: a general method for making classifiers cost-sensitive. Proceedings of the 5th ACM International Conference on Knowledge Discovery Data Mining (KDD’99), Aug 15-18, 1999. San Diego, CA, USA. New York, NY, USA: ACM, 1999: 155-164
7. Sun Y, Kamel M S, Wong A K C, et al. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 2007, 40(12): 3358-3378
8. He H B, Garcia E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 20(9): 1263-1284
9. Li Y F, Kwok J, Zhou Z H. Cost-sensitive semi-supervised support vector machine. Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI’10),Jul 11-15, 2010,Atlanta, GA, USA. Menlo Park, CA, SA: AAAI, 2010: 500-505
10. Liu X Y, Zhou Z H. Towards cost-sensitive learning for real-world applications. Proceedings of the 15th International Conference on New Frontiers in Applied Data Mining (PAKDD’08), May 20-23, 2008, Osaka, Japan. New York, NY, USA: ACM, 2011: 494-505
11. Alejo R, Sotoca J M, Casan G A. An empirical study for the multi-class imbalance problem with neural networks. Proceedings of the 13th Iberoamerican Congress on Pattern Recognition (CIARP’08), Sep, 2008, La Havana, Cuba. LNCS 5197. Berlin, Germany: Springer-Verlag, 2008 : 479-486
12. Erman J, Mahanti A, Arlitt M. Byte me: a case for byte accuracy in traffic classification. Proceedings of the 3rd Annual ACM Workshop on Mining Network Data (MineNet’07), Jun 12-16, 2007,San Diego, CA, USA. New York, NY, USA: ACM, 2007: 35-38
13. He H T, Che C H, Ma F T, et al. Improve flow accuracy and byte accuracy in network traffic classification. Proceedings of the 4th International Conference on Intelligent Computing (ICIC’08), Sep 15-18, 2008, Shanghai, China.LNCS 5227. Berlin, Germany: Springer-Verlag, 2008: 449-458
14. Quinlan J R. C4.5: programs for machine learning. San Francisco, CA,USA: Morgan Kaufmann, 1993
15. Xu P, Lin S. Internet traffic classification using C4.5 decision tree. Journal of Software, 2009, 20(10): 2692-2704 (in Chinese)
17. Witten I H, Frank E. Data mining, practical machine learning tool and techniques. 2nd edition.San Francisco, CA, USA: Morgan Kaufmann, 2005, 403-418 |