2. Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. Proceedings of the 14th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’06), Sep 11-14, 2006, Monterey, CA, USA. Los Alamitos, CA, USA: IEEE Computer Society, 2006: 179-188
3. Moore A W, Papagiannaki K. Toward the accurate identification of network applications. Proceedings of the the 6th Passive and Active Measurement Workshop (PAM’05), Mar 31-Apr 1, 2005, Boston, MA, USA. New York, NY, USA: ACM, 2005: 41-54
4. Qu X H, Liu Z J, Xie X Y. Research on distributed intrusion detection system based on protocol analysis. Proceedings of the 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication (ASID’09), Aug 20-22, 2009,Hong Kong, China. Piscataway, NJ, USA: IEEE, 2009: 421-424
6. Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: multilevel traffic classification in the dark. Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM2005), Aug 22-26, 2005, Philadelphia, PA, USA. New York, NY, USA: ACM, 2005: 229-240
7. Wang Y, Yu S Z. Machine learned real-time traffic classifiers. Proceedings of the 2nd International Symposium on Intelligent Information Technology Application (IITA’08): Vol 3, Dec 20-22, 2008, Shanghai, China. Piscataway NJ, USA: IEEE, 2008: 449-454
8. Zuev D, Moore A W. Traffic classification using a statistical approach. Proceedings of the the 6th Passive and Active Measurement Workshop (PAM’ 05), Mar 31-Apr 1, 2005, Boston, MA, USA. LNCS 3431. Heidelberg, Germany: Springer-Verlag, 2005: 321-324
9. Nguyen T T T, Armitage G. Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world IP networks. Proceedings of the 31st IEEE Conference on Local Computer Networks (LCN’06), Nov 14-16, 2006, Tampa, FL, USA. Piscataway, NJ, USA: IEEE, 2006: 369-376
10. Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: A statistical signature-based approach to IP traffic classification. Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM’04), Aug 30-Sep 3, 2004, Portland, OR, USA. New York, NY, USA: ACM, 2004: 135-148
11. Tavallaee M, Lu W, Ghorbani A A. Online classification of network flows. Proceedings of the 7th Annual Communication Networks and Services Research Conference (CNSR’09), May 11-13, 2009,Moncton, Canada. Washington, DC, USA: IEEE Computer Society, 2009: 78-85
12. Quinlan J R. C4.5: Programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1993: 302
13. Quinlan J R. Bagging, boosting, and C4.5. Proceedings of the 13th National Conference for Artificial Intelligence (AAAI’96), Aug 4-5, 1996,Portland, OR, USA. Cambridge, MA, USA: MIT Press, 1996: 725-730
14. Yang A M, Jiang S Y, Deng H. A P2P network traffic classification method using SVM. Proceedings of the 9th International Conference for Young Computer Scientists (ICYCS’08), Nov 18-21, 2008, Zhangjiajie, China. Los Alamitos, CA, USA: IEEE Computer Society, 2008: 398-403
15. Liu F, Li Z T, Nie Q B. A new method of P2P traffic identification based on support vector machine at the host level. Proceedings of the 2009 International Conference on Information Technology and Computer Science (ITCS’09): Vol 2, Jun 25-26, 2009, Kiev, Ukraine. Los Alamitos, CA, USA: IEEE Computer Society, 2009: 579-582
17. Schapire R E. The strength of weak learnability. Machine Learning, 1990, 5(2):197-227
18. Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139
19. Polikar R. Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 2006, 6(3): 21-45
20. Quinlan J R. Induction of decision trees. Machine Learning, 1986, 1(1): 81-106
21. Garcia-Dorado J L, Hernandez J A, Aracil J, et al. On the duration and spatial characteristics of Internet traffic measurement experiments. IEEE Communications Magazine, 2008, 46(11): 148-155 |