2. Dobre O A, Abdi A, Su W. Survey of automatic modulation classification techniques: classical approaches and new trends. IET Communications, 2007, 1(2): 137-156
3. Han W C, Han H, Wu L N, et al. A 1-dimension structure adaptive self-organizing neural network for QAM signal classification. Proceedings of the 3rd IEEE Conference on Natural Computation (ICNC’07), Aug 24-27, 2007, Haikou, China. Los Alamitos, CA, USA: IEEE Computer Society, 2007
4. Park C S, Choi J H, Nah S P, et al. Automatic modulation recognition of digital signals using wavelet features and SVM. Proceedings of the 10th Conference on Advanced Communication Technology (ICACT’08), Feb 17-20, 2008, Gangwon-Do, Korea. Piscataway, NJ, USA: IEEE, 2008: 87-390
5. Li J J, Lu M Q, Feng Z M. Hierarchical digital modulation recognition using support vector machines. Journal of Tsinghua University: Science and Technology, 2006, 46(4): 500-503 (in Chinese)
6. Tipping M E. The relevance vector machines. Proceedings of the 13th Annual Conference on Neural Information Processing Systems (NIPS’00), Nov 27-Dec 2, 2000, Denver, CO, USA. Cambridge, MA, USA: MIT Press, 2000: 652-658
7. Park C S, Kim D Y. A novel robust feature of modulation classification for recognition software radio. IEEE Transactions on Consumer Electronics, 2006, 52(4): 1193-1200
8. Kang M, Lee C, Joo J. Automatic recognition of analog and digital modulation signals using DoE Filter. Proceedings of the 9th International Conference on Communications and Information Technologie (ISCIT’09), Sep 28-30, 2009, Incheon, Korea. Piscataway, NJ, USA: IEEE, 2009: 609-614
9. Zou B J, Li C S, Wan G J. Feature extraction and its application to digital modulation recognition. Signal Processing, 2008, 24(2): 201-203 (in Chinese)
10. Bishop C M. Pattern recognition and machine learning.New York, NY, USA: Springer, 2007.
11. Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1(3): 211-244
12. Thayananthan A. Template-based pose estimation and tracking of 3D hand motion. Cambridge, UK: Cambridge University, 2005
13. Tipping M E, Faul A C. Fast marginal likelihood maximization for sparse Bayesian models. Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics (AI&STATS’03), Jan 3-6, 2003, Key West, FL, USA. 2003
14. Wang L, Fan Y M, Wu J. The research on kernel function parameter selection of support vector machine. Journal of Neijiang Teachers College, 2006, 21(z1): 78-81 (in Chinese)
15. Gou B, Huang X W. SVM multi-class classification. Journal of Southern Yangtze University, 2006, 21(3): 334-339 (in Chinese)
16. Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425 |