[1] RAFIQUE W, QI L Y, YAQOOB I, et al. Complementing IoT services through software defined networking and edge computing: a comprehensive survey. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1761 - 1804.
[2] LIU Z, QIU X S, ZHANG S, et al. Service scheduling based on edge computing for power distribution IoT. Computers, Materials & Continua, 2020, 62(3): 1351 - 1364.
[3] LIU X L, YU J D, FENG Z Y, et al. Multi-agent reinforcement learning for resource allocation in IoT networks with edge computing. China Communications, 2020, 17(9): 220 - 236.
[4] GHOSH A M, GROLINGER K. Edge-cloud computing for IoT data analytics: embedding intelligence in the edge with deep learning. IEEE Transactions on Industrial Informatics, 2021, 17(3): 2191 - 2200.
[5] LOSADA M, CORTÉS A, IRIZAR A, et al. A flexible fog computing design for low-power consumption and low latency applications. Electronics, 2020, 10(1): 57 - 79.
[6] GAO W F, ZHAO Z W, YU Z X, et al. Edge-computing-based channel allocation for deadline-driven IoT networks. IEEE Transactions on Industrial Informatics, 2020, 16 ( 10 ): 6693 -6702.
[7] XU J L, WANG S G, ZHOU A, et al. Edgence: a blockchain- enabled edg-computing platform for intelligent IoT-based dApps. China Communications, 2020, 17(4): 78 - 87.
[8] ZHANG W Y, LI S G, LIU L Y, et al. Hetero-edge: orchestration of real-time vision applications on heterogeneous edge clouds. Proceedings of the 2019 IEEE Conference on Computer Communications ( INFOCOM’19), 2019, Apr 29 - May 2, Paris, France. Piscataway, NJ, USA: IEEE, 2019: 1270 - 1278.
[9] HABAK K, AMMAR M, HARRAS K A, et al. FemtoClouds: leveraging mobile devices to provide cloud service at the edge. Proceedings of the IEEE 8th International Conference on Cloud Computing, 2015, Jun 27 - Jul 2, New York, NY, USA. Piscataway, NJ, USA: IEEE, 2015: 9 - 16.
[10] MAHENGE M P J, LI C L, SANGA C A. Mobile edge computing: cost-efficient content delivery in resource-constrained mobile computing environment. International Journal of Mobile Computing and Multimedia Communications, 2019, 10(3): 23 - 46.
[11] BAHREINI T, GROSU D. Efficient algorithms for multi- component application placement in mobile edge computing. IEEE Transactions on Cloud Computing, 2020, 10(4): 2550 - 2563.
[12] JIAO T Z, FENG X Y, GUO C P, et al. Multi-agent deep reinforcement learning for efficient computation offloading in mobile edge computing. Computers, Materials & Continua, 2023, 76(3): 3585 - 3603.
[13] ZHANG D, RASHID T, LI X K, et al. HeteroEdge: taming the heterogeneity of edge computing system in social sensing. Proceedings of the 2019 International Conference on Internationalernet of Things Design and Implementation ( IoTDI’19), 2019, Apr 15 - 18, Montreal, Canada. Piscataway, NJ, USA: IEEE, 2019: 37 - 48.
[14] TANG L, HE S B. Multi-user computation offloading in mobile edge computing: a behavioral perspective. IEEE Network, 2018, 32(1): 48 - 53.
[15] ZHANG D, MA Y, ZHANG Y, et al. A real-time and non- cooperative task allocation framework for social sensing applications in edge computing systems. Proceedings of the 2018 IEEE Real- Time and Embedded Technology and Applications Symposium ( RTAS’18 ), 2018, Apr 11 - 13, Porto, Portugal. Piscataway, NJ, USA: IEEE, 2018: 316 - 326.
[16] BAGULA A, ABIDOYE A P, LUSILAO-ZODI G A. Service-aware clustering: an energy-efficient model for the Internet-of- things. Sensors, 2016, 16(1): Article 9.
[17] LU C H. IoT-enabled adaptive context-aware and playful cyber- Physical system for everyday energy savings. IEEE Transactions on Human-Machine Systems, 2018, 48(4): 380 - 391.
[18] SAMADI P, WEN K, XU J J, et al. Software-defined optical network for metro-scale geographically distributed data centers. Optics Express, 2016, 24(11): 12310 - 12320.
[19] BIAN W W, WANG H X, JI Y F. A balancing scheme for QoS- aware service provisioning in OPS networks. Photonic Network Communications, 2012, 23(2): 198 - 203.
[20] VAN HOUDT G, MOSQUERA C, NÁPOLESG G. A review on the long short-term memory model. Artificial Intelligence Review, 2020, 53(1): 5929 - 5955.
[21] GUPTA S, SHUKLA R S, SHUKLA R K, et al. Deep learning bidirectional LSTM based detection of prolongation and repetition in stuttered speech using weighted MFCC. International Journal of Advanced Computer Science and Applications, 2020, 11 ( 9 ): 345 - 357.
|