[1] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489 -509.
[2] DONOHO D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289 -1306.
[3] NGUYEN M T, RAHNAVARD N. Cluster-based energy-efficient data collection in wireless sensor networks utilizing compressive
sensing. Proceedings of the 2013 IEEE Military Communications Conference (MILCOM'13), 2013, Nov 18 -20, San Diego, CA, USA. Piscataway, NJ, USA: IEEE, 2013: 1708 -1713.
[4] LUO C, WU F, SUN J, et al. Compressive data gathering for large-scale wireless sensor networks. Proceedings of the 15th Annual International Conference on Mobile Computing and Networking (MobiCom'09), 2009, Sept 20 -25, Beijing, China. New York, NY, USA: ACM, 2009: 145 -156.
[5] NGUYEN M T, TEAGUE K A. Compressive sensing based energy-efficient random routing in wireless sensor networks. Proceedings of the 2014 International Conference on Advanced Technologies for Communications (ATC'14), 2014, Oct 15 -17, Hanoi, Vietnam. Piscataway, NJ, USA: IEEE, 2014: 187 - 192.
[6] PAREDES J L, ARCE G R, WANG Z M. Ultra-wideband compressed sensing: channel estimation. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3): 383 -395.
[7] TAUBACK G, HLAWATSCH F. A compressed sensing technique for OFDM channel estimation in mobile environments: exploiting
channel sparsity for reducing pilots. Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, Mar 31-Apr 4, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2008: 2885 -2888.
[8] BAJWA W U, HAUPT J, SAYEED A M, et al. Compressed channel sensing: a new approach to estimating sparse multipath channels. Proceedings of the IEEE, 2010, 98(6): 1058 -1076.
[9] MAJUMDAR A, WARD R K, ABOULNASR T. Compressed sensing based real-time dynamic MRI reconstruction. IEEE
Transactions on Medical Imaging, 2012, 31(12): 2253 -2266.
[10] RAVISHANKAR S, BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE
Transactions on Medical Imaging, 2011, 30(5): 1018 -1041.
[11] MONTEFUSCO L B, LAZZARO D, PAPI S, et al. A fast compressed sensing approach to 3D MR image reconstruction. IEEE Transactions on Medical Imaging, 2011, 30(5): 2064 - 1075.
[12] LEE K, BRESLER Y, JUNGE M. Subspace methods for joint sparse recovery. IEEE Transactions on Information Theory, 2012,
58(6): 3613 -3641
[13] DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals. Proceedings of the
39th Asilomar Conference on Signals, Systems and Computers, 2005, Oct 30-Nov 2, Pacific Grove, CA, USA. Piscataway, NJ,
USA: IEEE, 2005: 1537 -1541.
[14] TROPP J A. Algorithms for simultaneous sparse approximation,part 2: convex relaxation. Signal Processing, 2006, 86 (3):
589 -602.
[15] TROPP J A, GILBERT A C, STRAUSS M J. Algorithms for simultaneous sparse approximation, part I: greedy pursuit. Signal
processing, 2006, 86(3): 572 -588.
[16] BLANCHARD J D, CERMAK M, HANLE D, et al. Greedy algorithms for joint sparse recovery. IEEE Transactions on Signal Processing, 2014, 62(7): 1694 -1704.
[17] DAVIES M E, ELDAR Y C. Rank awareness in joint sparse recovery. IEEE Transactions on Information Theory, 2012, 58(2): 1135 -1146.
[18] KIM J, WANG J, NGUYEN L T, et al. Joint sparse recovery using signal space matching pursuit. IEEE Transactions on Information Theory, 2020, 66(8): 5072 -5095.
[19] SCHMIDT R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation,
1986, 34(3): 276 -280.
[20] FENG P. Universal minimum-rate sampling and spectrum-blind reconstruction for multiband signals. Urbana-Champaign, IL,
USA: University of Illinois at Urbana-Champaign, 1998.
[21] KIM J M, LEE O K, YE J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing.
IEEE Transactions on Information Theory, 2012, 58(1): 278 - 301.
[22] LEE K, BRESLER Y. iMUSIC: iterative MUSIC algorithm for joint sparse recovery with any rank. ArXiv Preprint, arXiv:1004.
3071v1, 2010.
[23] WEN Z D, HOU B, JIAO L C. Joint sparse recovery with semisupervised MUSIC. IEEE Signal Processing Letters, 2017,
24(5): 629 -633.
[24] WANG L W, WANG X, FENG J F. Subspace distance analysis with application to adaptive Bayesian algorithm for face
recognition. Pattern Recognition, 2006, 39(3): 456 -464.
[25] CHEN J, HUO X M. Theoretical results on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing, 2006, 54(12): 4634 -4643.
|