1. Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(1): 338-353
2. Pawlak Z. Rough sets. Information Journal of Computer and Information Science, 1982, 11(5): 341-365
3. Zhang L, Zhang B. The theory and applications of problem solving-quotient space based granular computing. 2nd ed. Beijing, China: Tsinghua University Press, 2007 (in Chinese)
4. Yao Y Y. Granular computing: past, present, and future. Proceedings of the 3rd International Conference on Rough Sets and Knowledge Technology (RSKT’08), May 17-19, 2008, Chengdu, China. LNCS 5009. Berlin, Germany: Springer-Verlag, 2008: 27-28
5. Pawlak Z. Rough sets: theoretical aspects of reasoning about data. Boston, MA, USA: Kluwer Academic Publishers, 1991
6. Pawlak Z, Skowron A. Rough sets and Boolean reasoning. Information Sciences, 2007, 177(1): 41-73
7. Pawlak Z, Skoworn A. Rough sets: some extensions. Information Sciences, 2007, 177(1): 28-40
8. Abu-Donia H M. Multi knowledge based rough approximations and applications. Knowledge-Based Systems, 2012, 26(26): 20-29
9. Wang G Y, Peters J F, Skowron A, et al. Rough sets and knowledge technology. Fundamenta Informaticae, 2012, 7414(2/3): I-II
10. Greco S, Matarazzo B, S?owiński R. Granular computing and data mining for ordered data: the dominance-based rough set approach. New York, NY, USA: Springer, 2012
11. Wierman M J. Measuring uncertainty in rough set theory. International Journal of General Systems, 2007, 28(4): 283-297
12. Zhang Q H, Zhang Q, Wang G Y. The uncertainty of probabilistic rough sets in multi-granulation spaces. International Journal of Approximate Reasoning, 2016, 77: 38-54
13. Modrzejewski M. Feature selection using rough sets theory. Proceedings of the European Conference on Machine Learning (ECML’93), Apr 5-7, 1993, Vienna, Austria. Berlin, Germany: Springer-Verlag, 1993: 213-226
14. Pedrycz W, Vukovich G. Feature analysis through information granulation and fuzzy sets. Pattern Recognition, 2002, 35(4): 825-834
15. Guyon I, Elisseeff A. An introduction to variable feature selection. Journal of Machine Learning Research, 2003, 3: 1157-1182
16. Tiwari S P, Srivastava A K. Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Sets and Systems, 2013, 210(4): 63-68
17. Srinivas K, Rao G R, Govardhan A. Rough-fuzzy classifier: a system to predict the heart disease by blending two different set theories. Arabian Journal for Science and Engineering, 2014, 39(4): 2857-2868
18. Wang G Y, Yu H, Yang D C. Decision table reduction based on conditional information entropy. Chinese Journal of Computers, 2002, 25(7): 759-776 (in Chinese)
19. ?l?zak D. Approximate entropy reducts. Fundamenta Informaticae, 2002, 53: 365-390
20. Yao Y Y, Zhao Y. Discernibility matrix simplification for constructing attribute reducts. Information Sciences, 2009, 179(7): 867-882
21. Jiang F, Wang S S, Du J W, et al. Attribute reduction based on approximation decision entropy. Control and Decision, 2015, 30(1): 65-70 (in Chinese)
22. Wang G Y. Rough set theory and knowledge discovery. Xi’an, China: Xi’an Jiaotong University Press, 2001 (in Chinese)
23. Hu X, Cercone N. Learning in relational databases: a rough set approach. Computational Intelligence, 1995, 11(2): 323-338
24. Skowron A, Rauszer C. The discernibility matrices and functions in information systems. Theory and Decision Library, 1992, 11: 331-362
25. Ziarko W. Variable precision rough set model. Journal of Computer and System Science, 1993, 46(1): 39-59
26. Qian Y H, Liang J Y, Yao Y Y, et al. MGRS: a multi-granulation rough set . Information Sciences, 2010, 180(6): 949-970
27. Zhang Q H, Wang G Y, Xiao Y. Approximation sets of rough set. Journal of Software, 2012, 23(7): 1745-1759 (in Chinese)
28. Beaubouef T, Petry F E, Arora G. Information-theoretic measures of uncertainty for rough sets and rough relational databases. Information Sciences, 1998, 109(1/2/3/4): 185-195
29. Liang J Y, Chin K S, Dang C, et al. A new method for measuring uncertainty and fuzziness in rough set theory. International Journal of General Systems, 2002, 31(4): 331-342.
30. Zhang Q H, Xu K, Wang G Y. Fuzzy equivalence relation and its multi-granulation spaces. Information Sciences, 2016, 346-347: 44-57
31. Zhao J, Zhou Y H. New heuristic method for data discretization based on rough set theory. The Journal of China Universities of Posts and Telecommunications, 2009, 16(6): 113-120
32. Zhang X H, Dai J H. Rough implication operation and residuated based fuzzy logic system. The Journal of China Universities of Posts and Telecommunications, 2013, 20(S1): 109-112.
33. Pawlak Z, Skowron A. Rough membership functions: a tool for reasoning with uncertainty. Banach Center Publications, 1993
34. Wang G Y, Zhang Q H. Uncertainty of rough sets in different knowledge granularities. Chinese Journal of Computers, 2008, 31(9): 1588-1598 (in Chinese)
35. Yang L B, Gao Y Y, Ling W X. Principles and applications of fuzzy mathematics. Guangzhou, China: South China University of Technology Press, 2011 (in Chinese) |