Acta Metallurgica Sinica(English letters) ›› 2012, Vol. 19 ›› Issue (2): 96-99.doi: 10.1016/S1005-8885(11)60252-5

• Others • Previous Articles     Next Articles

Quasi-cyclic LDPC codes with high-rate and low error floor based on Euclidean geometries


  1. School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
  • Received:2011-07-14 Revised:2011-09-29 Online:2012-04-30 Published:2012-04-17
  • Contact: Yuan-Hua LIU
  • Supported by:

    This work was supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (11JK1007), the Program for Young Teachers in Xi’an University of Posts and Telecommunications (0001286), and the National Basic Research Program of China (2012CB328300).


An improved Euclidean geometry approach to design quasi-cyclic (QC) Low-density parity-check (LDPC) codes with high-rate and low error floor is presented. The constructed QC-LDPC codes with high-rate have lower error floor than the original codes. The distribution of the minimum weight codeword is analyzed, and a sufficient existence condition of the minimum weight codeword is found. Simulations show that a lot of QC-LDPC codes with lower error floor can be designed by reducing the number of the minimum weight codewords satisfying this sufficient condition.

Key words:

low-density parity-check codes, quasi-cyclic, Euclidean geometry