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Abstract
For studying and optimizing the performance of general鄄purpose computing on graphics processing units

(GPGPU) based on single instruction multiple threads(SIMT) processor about the neural network application, this
work contributes a self鄄developed SIMT processor named Pomelo and correlated assembly program. The parallel
mechanism of SIMT computing mode and self鄄developed Pomelo processor is briefly introduced. A common
convolutional neural network(CNN) is built to verify the compatibility and functionality of the Pomelo processor.
CNN computing flow with task level and hardware level optimization is adopted on the Pomelo processor. A specific
algorithm for organizing a Z鄄shaped memory structure is developed, which addresses reducing memory access in
mass data computing tasks. Performing the above鄄combined adaptation and optimization strategy, the experimental
result demonstrates that reducing memory access in SIMT computing mode plays a crucial role in improving
performance. A 6郾 52 times performance is achieved on the 4 processing elements case.
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1摇 Introduction

摇 The continuous development and progress of artificial
intelligence technology inject a powerful impetus into
modern society. Neural network training requires large鄄
scale data and sufficient computational power. In
network training platforms, hardware accelerators such
as GPGPU, field鄄programmable gate array ( FPGA),
and application specific integrated circuit (ASIC) are
necessary. These years, GPGPUs are the first choice
for running deep learning algorithms. NVIDIA provides
a compute unified device architecture ( CUDA )

parallel computing framework[1 - 2] for running deep
learning algorithms on GPGPUs. NVIDIA also
proposed a parallel computing paradigm called SIMT to
deploy efficiently algorithms on GPGPUs.
摇 SIMT processor is an extended branch architecture of
single instruction multiple data(SIMD) processor that
adds the concept of warp on the basis of SIMD. Warp
here borrows the concept from NVIDIA[2] . By
allocating the data according to the threads and storing
data as a private register unit, the parallel operation of
the data can be realized under a single identical
instruction, which is shown in Fig. 1. However, the
registers owned by different threads in SIMT are private
and cannot directly communicate with each other,
threads can only communicate with each other through
shared memory and synchronization mechanism.
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Fig. 1摇 SIMT working mechanism
摇

摇 SIMT architecture is similar to the vector鄄based
architecture of SIMD and essentially belongs to the
category of SIMD architecture. SIMT architecture is
mainly designed to execute the parallel multiple threads
and to realize the control of multiple processing
elements (PEs) through different instructions. Parallel
computing is done in terms of threads, the task of every
thread is independent of each other. Each thread
executes the same instruction to process different data.
The new threads are switched in terms of warp and
launched / dispatched to PEs during the memory access
latency[3 - 4] .

2摇 Pomelo processor

摇 The self鄄developed Pomelo processor can be
structurally summarized into three modules: the vector
processing unit (VPU), the memory management unit
(MMU), and the PE. Fig. 2 is the overview of the
Pomelo processor micro鄄architecture. The VPU is
responsible for data interaction with the external MMU,
and the VPU schedules the multiple warps to fetch and
decode instructions. The VPU optimizes in real鄄time
the computing work efficiency according to the
program蒺s status. The instruction fetch unit ( IFU) is
responsible for reading the instructions of the 8 warps,
and the switch will be triggered if memory access
instruction is fetched, and a warp switching request to
the warp schedule unit is sent to pause the instruction
fetch pipeline. The new warp index will be arbitrated
in the warp scheduler and the paused instruction fetch

pipeline will be activated according to the decoder蒺s
switching request and register status.

Fig. 2摇 Pomelo processor micro鄄architecture
摇

摇 The MMU memory unit is mainly responsible for
program storage, shared memory, and data cache. The
shared memory is for sharing data memory, and its
main function is to save and load the data shared by
multiple threads.
摇 The PE mainly realizes the parallel operation of
single instruction and multi鄄threaded operation under
SIMT architecture, for the single instruction sent by a
decoder, with the parallel execution of plural PEs. Up
to at most 64 operation units are designed in the PE
part, and each PE executes one thread and switches
between the corresponding number of threads through
different warp scheduling. Within each PE, different
branching operations between threads, including
program jumps and subroutine execution, are realized
through the design of the respective mask units. Each
of the PE operation unit has a arithmetic logical unit
( ALU ) and a floating point unit ( FPU ). The
operations realized by PE operation units are list in
Table 1. All floating data follows the IEEE鄄754
standards. The overall part of the PE coordinates the
relationship between at most 64 PEs to ensure the
correctness of program execution, the handling of
pipeline pause, access to storage, arithmetic
exceptions, and jump and call in conditional
statements.
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Table 1摇 Instruction set

Type Instrcution Number

Fixed鄄point instruction ADD,SUB,MUL,DIV,SGE 10

Floating鄄point instruction ADD,SUB,MUL,DIV,SGE 10

Logic shift
AND,OR,NOT,XOR,SLL,

SRL,SRA
7

Data shift
MOV,SWAP,SETB,NEG,

LDL,STL
6

Control instruction
CALL,RETN,JUMP,SETM,

REVM,ENDM
6

Minimalist instruction BADD,BGT,BMUL 3

Synchronization SYNC 1

Other command NOOP,HALT 2

摇 As for the instruction set, this Pomelo processor
adopts an instruction format with 24 bit length, as
shown in Fig. 3. In Fig. 3, opcode is the operand
corresponding to different instructions, Rd is the target
register, Ra and Rb are the source register, and imm is
the immediate number. The types of instructions
include fixed鄄point instructions, floating鄄point
instructions, logical shifts, data shifts, etc. as shown
in Table 1.

23:18 17:12 11:6 5:0

Opcode Rd Ra Rb / imm

Fig. 3摇 Instruction format

3摇 CNN adaptation and optimization

3. 1摇 CNN

摇 CNN is a neural network model widely used in image
processing, pattern recognition, computer vision, and
deep learning. It mainly mimics the way the human
brain processes visual information.
摇 The LeNet鄄5 is a classical CNN model with 1 input
layer, 2 convolutional layers, 2 pooling layers, and 2
fully connected layers with a final output layer. It is
used for the recognition of handwritten numbers. In the
convolutional layer, different convolutional kernels
could be used to process different image regions in
parallel, which will speed up the process of feature
extraction. The pooling layer could be computed in

parallel to reduce the size of the feature map as well.
These properties allow the LeNet鄄5 network to perform
multiple computational operations in parallel in SIMT
processors, taking full advantage of its parallel
computing capabilities[5 - 7] .
摇 Based on the specific architecture and instruction set
of SIMT, improvements in the operational efficiency of
CNNs and the maximization of the performance
potential of SIMT processors are explored, a series of
adaptations for SIMT processors are carried out in terms
of CNN structure parameter settings and data storage.

3. 2摇 Optimization of CNN structure and parameters

摇 The CNN for handwritten digit recognition is
optimized and adapted to the Pomelo processor in SIMT
mode, the network structure and parameters are based
on LeNet鄄5. The convolutional operations, pooling
operations, and rectified linear unit(ReLU) operations
in the CNN are organized as parallel computational
tasks, and these work are jointly performed by each
warp in the Pomelo processor.
摇 As shown in Fig. 4, there are N 伊 N convolutional
computation tasks, in task鄄level optimization strategy,
each warp includes Nt convolutional computing tasks
when the whole task is assigned to Nt warps, and the
tasks are executed in parallel in the form of switching
among warps.

Fig. 4摇 Task鄄level parallelism
摇

摇 All warps are running on the 4 same PEs with a total
of 128 registers. These 4 PEs perform data access and
computation in parallel. The whole convolutional
computing task is organized into many parallel threads,
and the operation of each thread is adapted and
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optimized for 4 PEs, data flow at the hardware鄄level is
executed as shown in Fig. 5.

Fig. 5摇 Hardware鄄level parallelism
摇

摇 Step 1摇 An instruction (LDL R1 R0#0) takes out 4
data in convolution conv1 and writes them into the
register R1 of 4 PEs. R0 is the address of index data
[1] of conv1 .
摇 Step 2摇 The instruction (LDL R2 R15#0) takes out
4 data in convolution conv2 and writes them into the
register R2 of 4 PEs . R15 is the address of index data
[1] of conv2 .
摇 Step 3 摇 Calculate the dot product of convolution
conv1 and convolution conv2 and write the result into
register R3 of the 4 PEs. Finally, the values in the 4
PEs are summed and output by the parsimonious
instruction, which is the result of a complete
convolution operation. The Pomelo processor reads and
executes the data in parallel according to the number of
PEs, which is hardware鄄level parallelism.
摇 The hardware resources are 4 PEs, and 4 data can
be retrieved at the same time by one data鄄reading
operation. In order to simplify data reading and ensure
that one convolution operation can be carried out
normally, the PE resources should be greater than or
equal to the number of convolution kernel parameters.

However, multiple PE resources will inevitably lead to
a waste of performance, so the convolution kernel of
this network adopts the size of 2 伊 2, which is adapted
to the existing 4 PEs hardware resources of Pomelo
processor.
摇 When making stride settings, since the network
takes a convolution kernel of size 2 伊 2. If stride is
taken as 1, it will lead to a data multiplexing situation,
which increases the complexity of the address offset
calculation in the data鄄accessing process. Therefore,
stride is set to 2 to complete one convolution in one
operation and maximize the parallel computing
advantage of the Pomelo processor.
摇 The training part of the net is done by the software
side in PyTorch environment, the training set is
MINIST, and the network definition is shown in
Table 2. In the final training, 24 parameters of the
first convolution layer, 144 parameters of the second
convolution layer, 2 016 parameters of the first fully
connected layer, and 840 parameters of the second
fully connected layer are obtained.

Table 2摇 CNN network structure parameter
Net level Net defination in PyTorch

The first
convolution layer

Conv2d[1,6,kernel_size = (2,2),
stride = (2,2)]

ReLU F(x) = max(0,x)

The first
maxpool layer

Maxpool2d[kernel_size = 2,stride = 2,
padding = 0,dilation = 1]

The second
convolution layer

Conv2d[6,6,kernel_size =
(2,2),stride = (2,2)]

ReLU F(x) = max(0,x)
The second

maxpool layer
Maxpool2d[kernel_size = 2,stride = 2,

padding = 0,dilation = 1]
The first fully
connected layer

Linear[ in_features = 24,
out_features = 84]

ReLU F(x) = max(0,x)
The second fully
connected layer

Linear[ in_features = 84,
out_features = 10]

摇 In summary, the size of the native input matrix (In)
is 32 伊 32, the size of the convolution kernel of the
convolutional layer is 2 伊 2, and the stride size of both
convolution and subsampling is 2. As shown in Fig. 6,
M represents the number of groups of convolution
kernels, and N represents the number of convolution
kernels per group.
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Fig. 6摇 CNN definition
摇

3. 3摇 Memory optimization

摇 After the training of the CNN model on the software
side, a total of 3 024 new weight parameters and
convolution kernels are generated, and a total of 4 048
data from 1 024 data including the native matrix need
to be pre鄄stored into the double data rate random
access memory (DDR RAM), and the storage location
is shown in Fig. 7. In Fig. 7, the input image data are
stored in the red space. The first layer of convolutional
kernel parameters are stored in the yellow space, the
second layer of convolutional kernel parameters are
stored in the blue space, the first layer of fully
connected layer parameters are stored in the green,
and the second layer of fully connected layer
parameters are stored in the purple space.

Fig. 7摇 Memory resource assignment
摇

摇 All the weight parameters are stored in Z鄄shaped,
and the value in the R0 register is the base address with
values 0, 4, 8, and 12. PEs will retrieve the data with
index [0], [1], [2], and [3] from DDR RAM
accordingly. If the native input matrix is still stored
sequentially, after the first layer of convolution
operation, the completion of dimensionality reduction
of the input matrix will result in the order of the data,
as shown in Fig. 8.

Fig. 8摇 Original storage structure
摇

摇 When subsampling and subsequent convolution
operations are performed based on the data structure in
Fig. 7, the data storage order is different from that of
the initial native matrix, and unless the base address
R0 is modified, it is impossible to take out the two鄄
dimensional (2D) data structure, but rather, the four
neighboring indexed data are taken out by a set of row
vectors, which makes it impossible to carry out
subsequent subsampling and the second layer of
convolution operations. For this reason, a storage
structure is designed for CNN native matrices for the
architectural characteristics of the Pomelo processors.
摇 The sequential storage in Fig. 7 means that after the
first layer of convolution, each pooling operation takes
an additional LDL instruction to fetch the correct
number. Since the whole CNN process is a chain
reaction, each subsequent convolutional layer and
pooling layer will require additional data鄄reading
instructions. Considering the structural parameters of
CNN, a total of 2 040 convolutional and pooling
operations are required for the whole network, which
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means that an additional 2 040 LDL operations are
required.
摇 The warp switching of the Pomelo processor is
sensitive to LDL / STL instructions. Each LDL / STL
instruction triggers the warp switching mechanism
once. According to many experimental data statistics,
the average time required for a single LDL / STL
(including warp switching) is about 118 ns. 2 040
additional LDL operations will result in an additional
240 720 ns. Meanwhile, the additional LDL operations
will necessarily include additional address offset
calculations, and it is assumed that each address offset
calculation can be completed with only one ADD
instruction, and the execution time of the ADD
instruction is 20 ns. Therefore, at least an additional
40 800 ns is required to complete the address offset
calculation.
摇 Unlike the sequential storage in Fig. 7, the novel
storage structure adopts a Z鄄shaped storage structure.
As shown in Fig. 9, every 2 伊 2 matrix data in the
native matrix is a minimum unit, and the sequential
storage forms a 4 伊 4 matrix data. Then every 4 伊 4
matrix data as a unit, sequential storage to form an 8 伊
8 matrix data, and so on. Benefit from the Z鄄shaped
storage design, the processor in the process of
convolution and subsampling, the new data matrix can
still be obtained by the 2D structure of the number of
operations, without changing the base address, to
support the subsequent convolution and subsampling
operations, until the full connection layer. Combined
with the above, if the new storage method is adopted,
the execution time can be reduced by 281 520 ns.

Fig. 9摇 Z鄄shaped storage structure
摇

摇 The full native matrix storage structure is shown in
Fig. 10.

Fig. 10摇 Initial data and parameters of the CNN
摇

摇 The address index in Z鄄shaped storage can be solved
by
Iaddr = ( r - 1) binary茚(c - 1) binary + 1 (1)
where 茚 denotes the operation of crossing and
combining different bits of two numbers[8 - 9], r
represents the row coordinates of an index, and c
represents the column coordinates of an index. The
computation process is shown in Fig. 11, taking r = 5,
c = 6, Iaddr = 50 as an example.

Fig. 11摇 Memory location
摇

摇 The network structure parameters and storage
structure are fixed, in this paper, the hardware
resource configuration of 8 warps and 4 PEs was
adopted to perform the CNN recognition task, which
realizes the parallel operation between 32 threads.
After the modeling of DDR RAM is completed with the
help of software tools, the algorithm model is developed
with assembly instructions. The instructions used in the
assembly process are categorized into seven types of
data shifting, fixed鄄point instructions, floating鄄point
instructions, other instructions, compare instructions,
control instructions, and minimalist instructions, as
shown in Table 3.
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Table 3摇 Instructions used for CNN

Instruction Type Instruction definition

LDL
STL
SETB

Data shifting
If (CX) R[D] = M[R[A] + im]
If (CX) M[R[A] + im] = R[D]

R[A]. B[7:0] = im[7:0]

ADD
SUB
MUL

Fixed鄄point
instruction

R[D] = R[A] + R[B]
R[D] = R[A] - R[B]
R[D] = R[A] 伊 R[B]

FADD
FSUB
FMUL

Floating鄄point
instruction

R[D] = R[A] + R[B]
R[D] = R[A] - R[B]
R[D] = R[A] 伊 R[B]

NOOP
HALT

Other
instruction

Manual clock delay
Mark warps end

SGE
Compare
instruction

R[D] = (R[A] > = R[B])

SETM
REVM
ENDM

Control instruction
If (A! = 0) set mask bit

Reverse current mask
End current mask

BADD
BGT

Minimalist
instruction

Data addition
Take the maximum value

摇 After finishing the assembly program development,
the number of each type of instructions is shown in
Fig. 12.

Fig. 12摇 Number of different instructions
摇

4摇 Experiment

摇 The input to the test case is a handwritten number
2, for details, the native input matrix is a tensor data
matrix converted from a handwritten picture with the
number 2. Ten simulation result weights of the softmax
classifier are finally output in the waveform as
32h忆3F7090D0, 32h忆4084EC4C, 32h忆41296EEF,
32h忆40698608, 32h忆C03B17C6, 32h忆3CF2A800,

32h忆3F137630, 32h忆C0FF09D4, 32h忆BED7C168,
32h忆C08E0E6E in order. Converting these
hexadecimal floating鄄point numbers to decimal gives
0郾 939 709 66, 4郾 153 844 83, 10郾 589 583 40,
3郾 648 805 62, - 2郾 923 326 02, 0郾 029 621 12,
0郾 576 022 15, - 7郾 973 855 97, - 0郾 421 397 45,
- 4郾 439 261 44 in order. Table 4 shows the
comparison of the output results of the software side.

Table 4摇 Comparison of identification weight data

Software Pomelo processor Error / %

0郾 939 707 98 0郾 939 709 66 0郾 000 001 68

4郾 153 842 52 4郾 153 844 83 0郾 000 002 31

10郾 589 583 53 10郾 589 583 40 0郾 000 000 13

3郾 648 805 24 3郾 648 805 62 0郾 000 000 38

- 2郾 923 326 36 - 2郾 923 326 02 0郾 000 000 35

0郾 029 621 62 0郾 029 621 12 0郾 000 000 50

0郾 576 021 62 0郾 576 022 15 0郾 000 000 53

- 7郾 969 947 99 - 7郾 973 855 97 0郾 003 907 98

- 0郾 421 397 11 - 0郾 421 397 45 0郾 000 000 34

- 4郾 439 261 80 - 4郾 439 261 44 0郾 000 000 36

Fig. 13摇 Recognition weight error curve

摇 The weight of the number “2冶 in the software model
is 10郾 589 583 53, which is the maximum value in the
result of the recognition weights, and the recognition is
correct, and the inference result is that the number in
the picture is “2冶. The weight result of the Pomelo
processor is 10郾 58, which is basically consistent with
the software model, and the average error of the
recognition weights is 0郾 039 139% , which is analyzed
and obtained from the computational error during the
execution of the FPU in the hardware PE unit. A
portion of the other numbers in the training set are also
screened for simulation, and the error profile is
obtained as shown in Fig. 13.
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摇 The overall simulation average error rate is only
0郾 02% . The Pomelo processor recognizes the results
correctly.
摇 In terms of performance, in this test case under 4
PEs granularity of parallel computation, the simulation
waveform data is counted, and the total number of
running clocks of Pomelo processor is tested after
excluding the cold start phase, and the acceleration
ratio with single PE resources is shown in Table 5.

Table 5摇 Acceleration ratio

Number of PEs Number of clocks Acceleration rate

1
4

423 848
65 035

6郾 52

摇 Analyzing the measured acceleration ratio in Table 4
with the number and the ratio of instructions, although
the increase in PE resources improved the performance
of the processor, it is still impossible to ignore the
impact of the overly large number of fixed鄄point and
data shifting instructions on the acceleration ratio.
Fixed鄄point instructions are executed by calculating the
address offsets of different data during assembly
language execution, while data shifting instructions
involve a large number of data accesses. Therefore,
the next step maybe to optimize the CNN algorithm
itself by combining the hardware architectural features
of the Pomelo processor as well as to improve the
access conflict problem in the access path, so as to
further explore the performance potential of the Pomelo
processor.

5摇 Conclusions

摇 In this paper, a Pomelo processor dedicated to
highly parallel computing tasks is proposed, and the
network parameters and data storage structure of CNN
are adapted to fully utilize the advantages of SIMT
computing mode.
摇 In SIMT mode, the processor plays the highest
efficiency when the convolution kernel size of CNN is
equal to the number of PE. In terms of memory
optimization, the Z鄄type storage structure is used to

improve the performance of the Pomelo processor by
reducing the times of memory access. The experimental
result indicates that the processor that works with the
Z鄄shaped storage structure on SIMT mode achieves a
6郾 52 times performance augmentation compared with
scalar mode.
摇 The future work will be focused on developing and
adapting more test cases including large scale CNN and
large scale matrix multiplication on the Pomelo
processor.
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