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Abstract
With the development of deep learning (DL), joint source鄄channel coding (JSCC) solutions for end鄄to鄄end

transmission have gained a lot of attention. Adaptive deep JSCC schemes support dynamically adjusting the rate
according to different channel conditions during transmission, enhancing robustness in dynamic wireless
environment. However, most of the existing adaptive JSCC schemes only consider different channel conditions,
ignoring the different feature importance in the image processing and transmission. The uniform compression of
different features in the image may result in the compromise of critical image details, particularly in low signal鄄to鄄
noise ratio (SNR) scenarios. To address the above issues, in this paper, a dual attention mechanism is introduced
and an SNR鄄adaptive deep JSCC mechanism with a convolutional block attention module (CBAM) is proposed, in
which matrix operations are applied to features in spatial and channel dimensions respectively. The proposed
solution concatenates the pooling feature with the SNR level and passes it sequentially through the channel attention
network and spatial attention network to obtain the importance evaluation result. Experiments show that the
proposed solution outperforms other baseline schemes in terms of peak SNR (PSNR) and structural similarity
(SSIM), particularly in low SNR scenarios or when dealing with complex image content.
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1摇 Introduction

摇 With the development of artificial intelligence and
computing technologies, semantic communication
focuses on the semantic level of information, with the
goal of precisely conveying the intended meaning of the

message, which can improve transmission efficiency
and have received widespread attention. Semantic
communication usually leverages JSCC technique,
which can jointly design and optimize source coding
and channel coding processes, effectively addressing
the “ cliff effect冶, reducing communication bandwidth
and improving communication robustness. For image
transmission, DL techniques are widely employed in
semantic communication systems because of their
capability to extract intricate features from images[1 - 2] .
Specifically, Bourtsoulatze et al. introduced a deep
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JSCC scheme[1], which involves the direct mapping of
pixel values from an image to complex鄄valued channel
input symbols. The scheme outperforms traditional
transmission solutions, making it especially effective in
low SNR scenarios. Yang et al. proposed a deep JSCC
scheme with adaptive rate control capability for wireless
image transmission[3], in which the outputs of semantic
encoder are divided into selective features and non鄄
selective features. An introduced policy network is
employed to determine the transmission of selective
features in conjunction with non鄄selective features.
Experiments illustrated that the proposed deep JSCC
method employing a single model can achieve
comparable performance to the optimized model
particularly trained with static target rate. Kurka et al.
proposed a JSCC scheme that incorporates channel
output feedback, which shows good performance in
terms of reconstruction quality for end鄄to鄄end fixed鄄
length image transmission, and reduces the average
delay in variable鄄length image transmission[4] .
摇 In image processing and transmission tasks, the
attention mechanism can be viewed as a dynamic
selection process of crucial features input to the image,
implemented through adaptive weights. Specifically, in
image processing tasks, Zhang et al. proposed a
hierarchical structure for extracting the semantic
information captured by the encoder[5] . To address
multi鄄task鄄oriented image features, this structure
employs multi鄄attention networks to extract image
features at the pixel level. Kang et al. introduced a
task鄄oriented semantic communication framework that
employs an efficient image retrieval approach[6] . In
Ref. [6], a personalized attention鄄based mechanism
is designed to achieve personalized semantic
communication by enabling the differential weight
encoding of triplets for crucial information based on
user preferences. In image transmission tasks, Xu et
al. proposed an attention鄄based deep JSCC (ADJSCC)
scheme[7] . This scheme allows for dynamic adjustment
of the transmission rate according to different SNRs
during transmission, without training a number of

neural networks to cover scenarios with varying SNR
levels. Bao et al. proposed an ADJSCC鄄l architecture
for image transmission[8] . This architecture
incorporates an SNR鄄adaptive module, providing
excellent resilience against the mismatch between the
trained and tested channel SNRs resulting from channel
variations. Simulation results show that the proposed
ADJSCC鄄l architecture can successfully improve the
reconstruction quality for wireless image transmission in
low SNR and bandwidth鄄limited scenarios. However,
in Ref. [7], the attention mechanism of the ADJSCC
is essentially a squeeze excitation network that only
considers the importance of features in different
channels but ignores the importance of pixels at various
positions, resulting in the loss of certain valuable
information during the image compression and
transmission process, affecting the accuracy of image
transmission.
摇 To address the above issues, in this paper, an SNR鄄
adaptive deep JSCC framework with attention weight
allocation mechanism is designed. The proposed
framework aims to effectively enhance the reconstruction
quality under a specific compression ratio (CR). The
main contributions are outlined as follows.
摇 1) A dual attention mechanism is introduced and an
SNR鄄adaptive deep JSCC framework with a CBAM is
proposed. The proposed framework consists of a feature
extraction module, a semantic importance evaluation
module, JSCC encoding and decoding modules, and an
image reconstruction module. By employing semantic
importance evaluation module, it can achieve better
transmission performance under various channel
conditions within a single trained network, saving
storage space significantly.
摇 2) The integration of channel attention and spatial
attention mechanisms is introduced, taking into
account the interdependence of spatial and channel
characteristics. The proposed SNR鄄adaptive CBAM
takes into account varying SNR levels and image
contents, allocating distinct weights to different
features by concatenating the pooling feature with the

2



Issue 1 Yang Yujia, et al. / SNR鄄adaptive deep joint source鄄channel coding scheme for image semantic transmission . . .

SNR level.
摇 3 ) An image semantic encoder is designed by
employing a residual structure, which is implemented
to mitigate gradient disappearance and overfitting when
training the network, enhancing the training effect of
the model.
摇 The remaining parts of this paper are organized as
follows. Sect. 2 demonstrates the end鄄to鄄end semantic
communication system based on attention mechanism.
Sect. 3 presents the specific network of our proposed
SNR鄄adaptive CBAM and image semantic encoder. The

simulation results and analysis are illustrated and
analyzed in Sect. 4. Finally, Sect. 5 concludes this
paper.

2摇 System model

摇 Semantic communication systems consist of three
essential components: the transmitter, the channel,
and the receiver. An end鄄to鄄end image semantic
communication system based on the attention
mechanism is proposed, as depicted in Fig. 1.

Fig. 1摇 End鄄to鄄end image semantic communication system based on attention mechanism
摇

摇 The system extracts source features through a feature
extractor based on DL, and assigns different weights to
different features with the help of joint training of the
semantic importance evaluation module and the JSCC
encoder. The JSCC decoder restores the semantic
features, and utilizes the image reconstruction module
to reconstruct the target image at the receiver. The
proposed architecture uses a semantic importance
evaluation module, enabling simultaneous
consideration of both image contents and channel SNR
conditions for image compression and reconstruction.
This approach efficiently allocates attention weights to
more critical tasks that can adaptively adjust the data
rate in diverse channel environments to enable efficient
semantic transmission. The specific structure of the
network is as follows.

2. 1摇 Transmitter of the proposed architecture

摇 The transmitter of the proposed architecture consists
of three parts: Semantic feature extractor, semantic
importance assessment module, and JSCC encoder.
The input image of size n = H( the height of image) 伊

W ( the width of image) 伊 C ( the number of image
channels) is represented by a vector s沂迬 n, where 迬
represents the set of real numbers.
摇 The specific process involves several steps. Firstly,
the image s undergoes preprocessing through a
normalization layer, mapping image pixel value to the
range of 0 to 1. Secondly, distinct semantic features of
the input image are extracted through a semantic
feature extractor based on convolutional neural network
(CNN), combined with the channel SNR 滋沂迬 . A
semantic importance assessment module is used to
evaluate importance of features and reassign weights to
obtain the semantic attention feature vector s忆 沂
迬 H 伊W 伊 C; Finally, the JSCC encoder is employed to
encode the semantic attention feature vector s忆 and the
channel feedback SNR 滋, resulting in a vector of
complex鄄valued channel input symbols z沂迯 k, where
k is the size of the channel input symbol, and 迯
denotes the set of complex numbers. The encoding
process can be expressed in Eqs. (1) and (2)
s忆 =M茁(T琢(s),滋) (1)
z =M茁(E兹(s忆),滋) (2)
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where M茁(·) serves as the semantic importance
evaluator, with its network parameter designated as 茁.
T琢(·) is the semantic feature extraction network, with
its network parameter denoted as 琢. E兹 (·)
corresponds to the encoding function of the JSCC
encoder, the network parameter is indicated as 兹 .
摇 Overall, the transmitter maps an n鄄dimensional
vector of the real鄄valued image s to a k鄄dimensional
vector of the channel input samples z . To adhere to
the average power constraint of the JSCC encoder, a
power normalization ( 1 / k ) E ( zz* ) 臆 1 is also
enforced, where z* represents the complex conjugate
of z.

2. 2摇 Receiver of the proposed architecture

摇 The receiver of the proposed architecture comprises
three components: JSCC decoder, semantic importance
assessment module and image reconstruction module.
The reshaping layer reorganizes the received signal,
collaborates with the semantic channel decoder to
mitigate noise interference in the additive white
Gaussian noise ( AWGN) channel, and restores the
semantic features. The image reconstruction module
deeply mines semantic information through the attention
mechanism, fuses semantic features and reconstructs
the target image. The denormalization layer scales each
element back to the value of each pixel within the
range of 0 to 255. Specifically, z is transmitted to the
receiver through the physical channel. The output
symbol of channel ẑ received by the JSCC decoder is
expressed in Eq. (3)
ẑ = z +棕 (3)
where the vector 棕沂迯 k is composed of independent
and identically distributed ( i. i. d) samples with the
distribution CN(0,滓2I). 滓2 is the noise power and
CN(·,·) represents a circularly symmetric complex
Gaussian distribution. I is the identity matrix.
摇 The JSCC decoder uses the decoding function R孜(·)
to map ẑ and 滋, 孜 is the parameter set; the image
reconstruction module uses the reconstruction function
R浊(·) to reconstruct the image, 浊 is the parameter

set. The reconstructed image of the receiver is
expressed in Eq. (4)
ŝ = R浊(R孜( ẑ,滋),滋) (4)
where ẑ沂迯 k represents the signal received by the
channel, and ŝ沂迬 n is the estimate of the original
image s.

2. 3摇 Loss function of the proposed architecture

摇 The mean square error (MSE) distribution between
the original image s and the reconstructed image ŝ is
expressed in Eq. (5)

d( s,ŝ) = 1
n 椰s - ŝ椰2 = 1

n 移
n

i = 1
( si - ŝi) 2 (5)

where si and ŝi depict the color component intensity of
each pixel related to s and ŝ respectively.
摇 In this paper, a CNN is used to model the JSCC
encoder and decoder. The objective of the CNN is to
find optimal parameters to minimize the distortion 兹*

and 孜* . The loss function of the network is expressed
in Eq. (6)
(兹*,孜*) = arg min

兹,孜
{Ep(滋)Ep( s,ŝ)[d( s,ŝ)]} (6)

where 兹* represents the optimal parameter of the
encoder, 孜* represents the optimal parameter of the
decoder, p( s,ŝ) is the joint probability distribution of
s and ŝ, and p(滋) is the probability distribution of the
SNR.

3 摇 Proposed semantic encoder based on SNR鄄
adaptive CBAM

摇 In this section, a dual attention mechanism based on
SNR鄄adaptive mechanism with CBAM named SNR鄄
adaptive CBAM is proposed. The channel attention
module and spatial attention module can effectively
enhance the model爷 s perception ability by prioritizing
crucial features and inhibiting irrelevant features.
SNR鄄adaptive CBAM can be incorporated into many
network architectures as a plug鄄and鄄play module.
Furthermore, a detailed network architecture is
presented for the proposed image JSCC encoder, which
is designed to efficiently extract semantic features.
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3. 1摇 Proposed SNR鄄adaptive CBAM

摇 The specific structure of the SNR鄄adaptive CBAM is
illustrated in Fig. 2. Comprising two sequentially

connected modules, the proposed module is designed
for integration into main layers of neural networks,
such as convolutional and transposed convolutional
layers.

Fig. 2摇 Specific structure of SNR鄄adaptive CBAM
摇

摇 The SNR鄄adaptive CBAM is implemented by
assessing the importance weights of the features.
Specifically, for the feature map F沂迬 H 伊W 伊 C obtained
from the feature extraction module, the SNR鄄adaptive
CBAM module derives the attention map across channel
and spatial dimensions based on SNR levels. It derives
a one鄄dimensional (1D) channel attention map Mc沂
迬 1 伊 1 伊 C and a two鄄dimensional (2D) spatial attention
map Ms沂迬 H 伊W 伊 1, which are combined with the input
feature map. After multiplication, a new feature map
F义 沂 迬 H 伊W 伊 C is generated for joint encoding and
decoding. The specific process is expressed in
Eq. (7)
F忆 =Mc(F)茚F
F义 =Ms(F忆)茚F忆 (7)
where 茚 denotes element鄄wise multiplication
operation. Throughout the multiplication process,
attention weights are appropriately spread. Channel

attention weights are elongated across the spatial
dimension, whereas spatial attention weights are
elongated across the channel dimension. The
particulars of each attention module are elucidated
below.
摇 1)Channel attention module
摇 The channel attention module mainly focuses on the
inter鄄channel relationships of features. To infer more
refined channel attention, both average pooling and
max鄄pooling are considered during image compression
in the spatial dimension. Average pooling gives
feedback for all pixels in the feature map, whereas
max鄄pooling only obtains feedback for the location with
the highest pixel value when calculating gradient
backpropagation. Initially, spatial information is
consolidated from the feature map through the
utilization of both average pooling and max鄄pooling
operations. This process yields features derived from
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average pooling Fc
avg沂迬 1 伊 1 伊 C and max鄄pooling Fc

max沂
迬 1 伊 1 伊 C . These obtained features are concatenate with
the channel feedback SNR 滋 to generate contextual
information Fc忆avg and Fc

max as depicted in Eqs. (8) and
(9)
Fc忆avg = [Fc

avg,滋]沂迬 C + 1 (8)
Fc忆max = [Fc

max,滋]沂迬 C + 1 (9)
摇 After reshaping, the features individually fed into
identical multi鄄layer perceptrons (MLPs) with hidden
layers to generate attention map Mc 沂 迬 1 伊 1 伊 C . To
minimize parameter overhead, the hidden activation
size is set to 迬 1 伊 1 伊 (C / r), where r is the reduction ratio
(set to 16 in this paper). The output features are
consolidated using element鄄wise summation to generate
the channel attention map Mc ( F) 沂 迬 1 伊 1 伊 C . The
channel attention is calculated as shown in Eq. (10)
Mc(F) = 滓(MLP(Fc忆avg) + MLP(Fc忆max)) =

滓(W1啄(W0(Fc忆avg)) +W1啄(W0(Fc忆max)))
(10)

where 啄 and 滓 represent the activation functions
rectified linear unit ( ReLU) and Sigmoid function
respectively. The two inputs of the network share the
MLP weight parameters W0 and W1,W0沂迬 C / r 伊 C,and
W1沂迬 C 伊 C / r .
摇 2)Spatial attention module
摇 The spatial attention module mainly focuses on the
spatial relationship of features. The feature map output
by the channel attention module serves as the input
feature map for this module. Initially, average pooling
and max鄄pooling operations are applied along the
channel axis to aggregate the channel information of the
feature map, generating two 2D feature maps:Fs

avg沂
迬 H 伊W 伊 1 and Fs

max沂迬 H 伊W 伊 1 . After concatenating them
to generate effective feature descriptors, a
convolutional layer and sigmoid function layer are
applied to reduce dimensionality, producing a 2D
spatial attention map Ms(F忆)沂迬 W 伊 H 伊 1 . The specific
calculation of spatial attention is expressed in
Eq. (11)
Ms(F忆) = 滓( f7 伊 7([Fs忆avg,Fs忆max])) (11)

where 滓 represents the sigmoid function and f 7 伊 7

represents a convolution operation with the kernel size
of 7 伊 7.

3郾 2 摇 Joint source鄄channel encoder for image
transmission

摇 The proposed image semantic encoder is made up of
two modules: A semantic feature extraction network
and a JSCC encoder, both of which are composed of
multiple nonlinear layers. It serves as source encoder
and channel encoder that the input of the image
semantic encoder is source values and the output of the
image semantic encoder is channel symbols. The main
intention is to utilize a CNN to extract different features
within the image and subsequently transmit them to the
channel after encoding.
摇 As shown in Fig. 3, a generate feature block (GFB)
comprises a convolutional layer, a generalized divisive
normalization (GDN) layer[9] and a parametric ReLU
(PReLU) layer[10] . Among these components, the
convolution layer is specified by parameters m 伊 m 伊
C |引st, which means that the convolution kernel size
is m and there are C output channels. The symbol 引
represents downsampling operations, and the parameter
st represents the stride in the convolution layer.
Residual convolution block (RCB) is composed of a
residual network incorporating two convolutional
layers, two GDN layers and two PReLU layers. This
configuration is implemented to mitigate gradient
disappearance and overfitting during network training,
enhancing the training effect of the model[11] . Each
GFB and RCB is followed by an SNR鄄adaptive CBAM
to assign feature weights based on image contents and
channel information. In traditional JSCC, batch
normalization ( BN ) introduces varying mean and
standard deviation for each processed batch, which is
equivalent to the adding noise. However, this approach
is unsuitable for generative models like image
reconstruction and compression.
摇 Therefore, the GDN layer is introduced to normalize
the feature, making it especially well鄄suited for image
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reconstruction. The GDN layer expands the channel of
each module in the convolutional layer, which is
effective in addressing image compression and
transmission tasks[9] . Additionally, the paper
incorporates the pre鄄activation residual neural network

( pre鄄activation ResNet ) [12], which enhances the
training effect and transmission accuracy of the model
by altering the position of the normalization layer in the
residual network. The image semantic decoder
performs the opposite operation sequentially.

Fig. 3摇 Image semantic encoder components

4摇 Simulation results and analysis

摇 In this section, the simulation parameters in the
experiments are presented. Subsequently, simulation
results are conducted to evaluate the performance of the
proposed scheme.

4. 1摇 Simulation parameters

摇 This paper utilizes the canadian institute for
advanced research (CIFAR)鄄10 dataset[13] to train and
evaluate the proposed scheme. The CIFAR鄄10 dataset
comprises 60 000 color images, each consisting of 32 伊
32 pixels. The training dataset and testing dataset
encompass 50 000 and 10 000 images respectively. The
proposed scheme is implemented using TensorFlow[14]

and Keras, which is a high鄄level application
programming interface (API) designed for constructing
and training DL models. An adaptive moment (Adam)
estimation optimizer[15] is chosen for optimization, in
which the learning rate is configured as 0郾 000 1 and
the batch size is set to 128. The experiments maintain
a fixed training epoch equal to 1 024 to measure

training efficiency. In this paper, the number of
transmit channel is set to 16, and the minimum
training loss is set to 108 .
摇 The average PSNR and SSIM[16] are used for quality
measurement to evaluate performance. PSNR is a
measure of the ratio between the maximum potential
power of a signal and the detrimental noise power that
impacts its representation accuracy, determined by the
MSE. The average MSE of N images is defined in
Eq. (12)

XMSE = 1
N 移

N

i = 1
d( s( i),ŝ( i)) (12)

where s( i) and ŝ( i) respectively denote the ith original
image and the its reconstructed counterpart.
Correspondingly, PSNR is computed in Eq. (13)

XPSNR = 10lg
X2

max

XMSE
(13)

where Xmax denotes the maximum pixel value of the
image (if each pixel in the image is 8 bit binary, the
Xmax is 255). The XMSE denotes the value of MSE. The
PSNR for each image is initially calculated and
subsequently averaged over all test images. SSIM
quantifies the similarity between two digital images. It
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employs three criteria to measure images: Luminance,
contrast and structure. The SSIM between two given
images s and ŝ is defined in Eq. (14)

XSSIM( s,ŝ) =
(2滋s滋 ŝ + C1)(2滓sŝ + C2)

(滋2
s + 滋2

ŝ + C1)(滓2
s + 滓2

ŝ + C2)
(14)

where 滋s and 滋 ŝ, 滓s and 滓 ŝ are the mean and standard
deviation of s and ŝ , 滓sŝ is the covariance of s and ŝ ,
C1, C2 are all constants employed for preserving the
stability of luminance, contrast and structure. The
expression of the SNR 滋 of the proposed scheme is
shown in Eq. (15)

滋 = 10lg
Ps

Pn
(15)

where Ps represents the power of signal and Pn

represents the power of noise.

4. 2摇 Simulation results

摇 To validate the effectiveness of our proposed SNR鄄
adaptive CBAM scheme, the DL鄄based JSCC
architecture utilized in Ref. [ 17 ] is selected as a
benchmark for comparison. Training the JSCC scheme
under a specific SNR can produce comparable
performance to the separate source channel coding
(SSCC) solution using joint photographic experts group
2000 ( JPEG2000) for source coding and low density
parity check ( LDPC) code for channel coding. The
paper trains the DL鄄based JSCC scheme under 滋train =
- 10 dB, 0 dB, 10 dB, and 20 dB respectively, where
滋train is training SNR value. The SNR鄄adaptive CBAM
architecture is trained with a distinct distribution covering
the range of 滋train沂[ -10 dB,20 dB]. The performance
of the proposed SNR鄄adaptive CBAM scheme and the
DL鄄based JSCC scheme is evaluated under 滋test 沂
[ -10 dB, 20 dB ]. To alleviate the influence of
channel noise randomness on the test results, all
images in the testing dataset undergo transmission 10
times across the AWGN channel.
摇 Fig. 4 ( a) and Fig. 4 ( b) show the results of the
proposed JSCC with SNR鄄adaptive CBAM scheme and
the DL鄄based JSCC scheme shown in Ref. [1] when
the RC ( i. e. CR) is 1 / 12 and 1 / 3 respectively.

Among them, the CR is defined as RC = k / n, where k
represents the number of pixels required for the image
after compression, n represents the number of pixels
required for the original image. A smaller CR indicates
that the source occupies fewer channel resources,
demanding higher performance from the model.

Fig. 4摇 PSNR performance comparison with different
CRs on AWGN channels

摇

摇 In Fig. 4(a), when RC = 1 / 12, the proposed JSCC
with SNR鄄adaptive CBAM scheme outperforms the DL鄄
based JSCC model trained under a specific SNR across
all intervals. As test SNR value 滋test increases, the
PSNR of all schemes gradually increases. For the DL鄄
based JSCC scheme, optimal results are achieved when
the 滋test is similar to its corresponding 滋train . Even when
滋test = 滋train, the performance of our scheme remains
superior to the DL鄄based JSCC scheme, if 滋test deviates
from 滋train, the advantages of the proposed scheme are
more obvious. Specifically, when training the DL鄄
based JSCC scheme under a SNR of - 10 dB, its
performance is superior compared to other training
methods under low SNR conditions. However, in a

8
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favorable SNR environment, the performance of the
DL鄄based JSCC scheme is relatively poor due to
significant differences between the testing and training
environments. In Fig. 4 ( b), when RC = 1 / 3, the
PSNR of each scheme is higher, indicating better
overall model performance. While the performance gain
of the proposed scheme gradually disappears under

specific SNR conditions, it still demonstrates robust
performance in the overall analysis.
摇 A comparative analysis is conducted by evaluating
the proposed scheme against the baseline scheme on
the CIFAR鄄10 dataset. The corresponding accuracy
values under various CRs are presented in Table 1 and
Table 2.

Table 1摇 Accuracy performance comparison with a CR of 1 / 3

Strategy name 滋train / dB
Accuracy

滋test = - 10 dB 滋test = 0 dB 滋test = 10 dB 滋test = 20 dB

JSCC with SNR鄄adaptive CBAM [ - 10,20] 0. 628 8 0. 781 1 0. 858 2 0. 879 5

DL鄄based JSCC - 10 0. 652 7 0. 688 4 0. 690 4 0. 690 6

DL鄄based JSCC 0 0. 549 4 0. 779 1 0. 810 6 0. 813 4

DL鄄based JSCC 10 0. 464 7 0. 737 5 0. 856 8 0. 871 8

DL鄄based JSCC 20 0. 404 8 0. 679 7 0. 845 3 0. 881 9

Table 2摇 Accuracy performance comparison with a CR of 1 / 12

Strategy name 滋train / dB
Accuracy

滋test = - 10 dB 滋test = 0 dB 滋test = 10 dB 滋test = 20 dB

JSCC with SNR鄄adaptive CBAM [ - 10,20] 0. 581 3 0. 704 5 0. 783 0 0. 802 5

DL鄄based JSCC - 10 0. 592 7 0. 639 4 0. 645 0 0. 645 6

DL鄄based JSCC 0 0. 544 5 0. 700 6 0. 738 1 0. 742 2

DL鄄based JSCC 10 0. 478 5 0. 673 0 0. 776 8 0. 796 9

DL鄄based JSCC 20 0. 453 6 0. 646 6 0. 773 3 0. 804 5

摇 Table 1 and Table 2 clearly indicates that,
irrespective of the RC being 1 / 3 or 1 / 12, the proposed
scheme consistently achieves the highest accuracy when
滋test = - 10 dB, 0 dB and 10 dB. Remarkably, even
under challenging conditions such as an extremely poor
SNR (e. g. , - 10 dB) or exceptional conditions such
as an excellent SNR ( e. g. , 20 dB), our scheme
exhibits only marginal performance degradation
compared to the baseline scheme when 滋test = 滋train .
Significantly, our scheme exhibits a pronounced
advantage when 滋test deviates from 滋train . This is
attributed to the effective integration of information
pertaining to varying channel conditions and image
contents by the SNR鄄adaptive CBAM, enabling the
dynamic allocation of attention weights. Consequently,
our scheme proves robust for image classification and

transmission across a diverse range of channel
conditions.
摇 The perceptual SSIM is also adopted for evaluating
image quality. Fig. 5 ( a) and Fig. 5 ( b) present the
performance comparison of different schemes under the
SSIM evaluation criterion. The proposed scheme
exhibits high SNR鄄adaptive performance, irrespective
of the RC = 1 / 3 or 1 / 12, outperforming other schemes
across various SNRs. Even when 滋test = 滋train, it is still
able to achieve similar performance comparable to the
DL鄄based JSCC scheme.
摇 Based on the above analysis, it shows that JSCC with
SNR鄄adaptive CBAM still exhibits good PSNR and
SSIM performance in a challenging channel
environment ( such as SNR is 0 dB) a or a low CR
( such as RC = 1 / 12 ). By utilizing the attention
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mechanism, it demonstrates outstanding SNR adaptive
characteristics, enabling adaptation to different SNR
levels based on a single training model. Moreover,
SNR鄄adaptive CBAM significantly reduces model
complexity and the total number of training parameters,
effectively alleviating storage pressure and improving
the efficiency of image transmission.

Fig. 5摇 SSIM performance comparison with different
CRs on AWGN channels

摇

5摇 Conclusions

摇 In this paper, an SNR鄄adaptive deep JSCC
mechanism with CBAM is proposed to achieve better
transmission performance under various channel
conditions. A semantic encoder model is designed
using a residual structure, effectively extracting
semantic features to facilitate image transmission tasks.
Additionally, an SNR鄄adaptive CBAM is proposed to
combine the varying channel conditions and image
contents, enabling the allocation of attention weights.
Extensive simulation results demonstrate that the

proposed SNR鄄adaptive image semantic transmission
framework achieves better performance in terms of
PSNR and SSIM.
摇 In future research, a potential direction is to
collaboratively design a channel estimation module
which can effectively extend the proposedscheme to a
real channel environment. It can also incorporate
certain anti鄄interference operations, potentially
enhancing reconstruction performance and facilitating
practical applications.
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