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Abstract
This paper aims at solving the linear鄄quadratic optimal control problems (LQOCP) for time鄄varying descriptor

systems in a real Hilbert space. By using the Moore鄄Penrose inverse theory and space decomposition technique, the
descriptor system can be rewritten as a new differential鄄algebraic equation (DAE), and then some novel sufficient
conditions for the solvability of LQOCP are obtained. Especially, the methods proposed in this work are simpler and
easier to verify and compute, and can solve LQOCP without the range inclusion condition. In addition, some
numerical examples are shown to verify the results obtained.

Keywords摇 linear鄄quadratic optimal control problem (LQOCP), time鄄varying descriptor system, Moore鄄Penrose inverse, space decomposition

Received date: 25鄄05鄄2023
Corresponding author: Huang Junjie, E鄄mail: huangjunjie@ imu. edu. cn
DOI: 10. 19682 / j. cnki. 1005鄄8885. 2023. 1011

1摇 Introduction

摇 For the DAE,
(A( t)x( t)) 忆 = C( t)x( t) + B( t)u( t);摇 t沂[0,T]

(1)
where T逸0, A ( t), B ( t), C ( t) are continuous
operator鄄valued functions, x ( t ) and u ( t ) are
continuous functions in time t, if A( t) is singular,
the DAE can be called a time鄄varying descriptor or
singular system. The descriptor system is a kind of
system with more general formulation and can be used
to describe many real system models[1] more
conveniently and naturally, which has been widely
concerned in recent years and applied in chemical

engineering, management science, aerospace
engineering, robotic technology and so on.
Rosenbrock[2] first proposed the concept of descriptor
systems to study some structural properties of a class
of dynamical systems. In 1989, Dai[3] published a
classic monograph on the basic theory of descriptor
systems, after that, the descriptor system theory has
been developed rapidly, including the solvability of
initial value problems, multi鄄point boundary value
problems (BVPs), the stability and robust stability of
solutions[4 - 8] . For instance, the problems of robust
control and filtering for descriptor systems were
investigated in Ref. [ 4 ] . In Ref. [ 5 ], the
generalized Lyapunov inequality was applied to
describe the dissipative Hamiltonian equations, and
some sufficient conditions for the stability of the port鄄
Hamiltonian descriptor system were given. Terasaki et
al. [6] considered the minimum controllability problem
on linear structural descriptor systems by means of
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Dulmage鄄Mendelsohn decomposition. In Ref. [7],the
authors considered the singular optimal control
problem ( OCP) of minimizing the energy supply of
linear dissipative port鄄Hamiltonian descriptor systems.
A sliding mode observer design method was proposed
in Ref. [8] to estimate the states and unknown inputs
of a class of non鄄infinite observable descriptor
systems.
摇 The OCP is to find an optimal control method from
all possible control schemes so that the given
performance index attains the optimal value for a
controlled dynamic system. An OCP is said to be an
LQOCP, if the control schemes and performance index
can be determined by linear and quadratic functions of
state components and control variables, respectively.
In recent years, the research on the optimal control
theory has made an increasing progress[9 - 22] . Sun et
al. [9] focused on the stochastic LQOCP in an infinite
horizon with constant coefficients. Based on Riccati
equations and strongly continuous quasi semi鄄groups,
LQOCPs for non鄄autonomous linear control systems
were considered in Ref. [10]. Besides, Ref. [11]
considered the stochastic LQOCP and revealed the
deep characteristics of the stochastic turnpike problem.
In Ref. [12], the authors used Bellman爷 s dynamic
programming principle to propose a reinforcement
learning method and solved the infinite horizon
continuous鄄time stochastic linear quadratic problem.
LQOCP for stochastic systems with partial information
was studied in Ref. [13].
摇 The OCP for different linear systems has been
concerned by many researchers. Kurina[16] studied the
discrete OCP in descriptor systems by using the
projection method, and the time鄄varying case of version
was solved in Ref. [ 17 ]. After that, based on the
method of solving DAEs initial value problems, an
algorithm for solving LQOCP of two鄄steps descriptor
systems was proposed in Ref. [ 18 ], and Kurina et
al. [19] studied the LQOCP where the performance
index contained two small parameters of different
orders. More recently, OCP for discrete and
continuous stochastic descriptor systems, indefinite
LQOCP for rectangular descriptor systems and linear
descriptor Markov jump systems were studied [20 - 22] .

摇 It is worth noting that the space decomposition is a
useful method to get the spectrum of operator
completion problems [23] , the quadratic numerical
range of operators [24] , the invertibility of operator
matrices [25] , etc. Inspired by Ref. [17], this paper
aims at solving LQOCPs for time鄄varying descriptor
systems, and gets some new sufficient conditions for
solvability of the associated linear BVP based on space
decompositions. Different from most of the existing
literatures, ( e. g. Refs. [ 17 - 22 ]), a new
technique combining the Moore鄄Penrose inverse with
space decomposition, is proposed in this paper to deal
with the LQOCP for time鄄varying descriptor systems,
which is more effective to study the non鄄singular
operator鄄valued function for descriptor systems, and
can relax some restriction conditions, such as
removing the range inclusion condition in Ref. [17] .
This method can greatly reduce the difficulty of
analysis and decrease the burden of calculations, and
the obtained results in this paper can be applied into
some real systems to solve the OCP. The main
contributions are as follows.
摇 1 ) By means of the Moore鄄Penrose inverse and
space decomposition, the time鄄varying descriptor
system can be reformulated as a new DAE.
摇 2) This paper uses the space decomposition method
to obtain a new sufficient condition for the control
optimality. By comparing with the result in Ref. [17],
this sufficient condition does not need to define other
variables except the allowable control input and the
corresponding solution.
摇 3) The solvable conditions of the linear BVP are
given by the invertibility or positive semi鄄definiteness
of some suitable operators, which cannot be
necessary to judge the invertibility of associated
operator matrix and the range inclusion condition, in
contrast to Ref. [17] using non鄄negative Hamiltonian
systems.
摇 The rest of this paper is arranged as follows. In
Sect. 2, some preliminaries are introduced. Sect. 3
presents a sufficient condition for the control
optimality. Sect. 4 discusses the solvability of the
LQOCP. Examples are given in Sect. 5. Finally, the
conclusion is summarized in Sect. 6.
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2摇 Preliminaries

摇 Some useful definitions and symbols for linear
operators in real Hilbert spaces are introduced.
摇 Let X, Y, Z be real Hilbert spaces and L(X,Y) be the
collection of all bounded linear operators from X to Y. For
notational simplicity, we denote L(X)颐= L(X,X). If the
operator N沂L (X,Y) has closed range, the Hilbert
spaces X and Y admit the orthogonal decomposition
X = K (N)彝茌K(N) and Y = I(N)茌I (N)彝, where
K(·) and I(·) are the kernel and image of a linear
operator; 彝 and 茌 denote the orthogonal complement
and orthogonal sum operations, respectively. Based on
such space decompositions, an operator in L (X, Y)
would be represented by a matrix form with some
special characteristics[25] . Define P and Q as the
orthogonal projections onto K(N) along K (N)彝 and
onto I (N)彝 along I(N), respectively. It is obvious
that the projections P and Q exist uniquely and
I(P) = K(N), I(Q) = I (N)彝 .
摇 Definition 1[26] 摇 Given N沂L(X,Y), if there is an
M沂 L ( Y, X) such that NMN = N, MNM = M,
(NM)* = NM,(MN)* = MN, then M is unique,
called as the Moore鄄Penrose inverse of N, where * is
the adjoint operation.
摇 As usual,N + 颐=M and, in this case, M is said to be
Moore鄄Penrose invertible, where + is the Moore鄄
Penrose inverse operation.
摇 As well鄄known, NN + = I -Q,N + N = I - P, and N
is Moore鄄Penrose invertible if and only if N has closed
range, which is usually defined as the normal
solvability of N, where I is the identity matrix.

3摇 A sufficient condition for control optimality

摇 In this section, a new DAE of the time鄄varying
descriptor system and a novel sufficient condition for
control optimality by means of the Moore鄄Penrose
inverse and space decomposition are obtained.
摇 Consider the following descriptor system
(A( t)x( t)) 忆 = C( t)x( t) + B( t)u( t); 摇 t沂[0,T]

(2)

A(0)x(0) = y0 (3)
and minimize the associated quadratic cost functional

J(u(t),x(t)) = 1
2 掖x(T),Vx(T)业 + 1

2 乙
T

0
(掖x(t),

W(t)x(t)业 +2掖x(t),S(t)u(t)业 +
掖u(t),R(t)u(t)业)dt (4)

Here, T逸0 and y0 沂 Y are fixed, x ( t) 沂 X and
u( t)沂Z, the operator鄄valued function A( t)沂L(X,
Y) is continuously differentiable and Moore鄄Penrose
invertible for all t沂[0,T]. C( t)沂L(X,Y),B( t)沂
L(Z,Y) and S ( t) 沂 L (Z,X) are all continuous.
W( t)沂L(X) and R( t)沂L(Z) are continuous and
self鄄adjoint for all t沂[0,T], V沂L(X) is self鄄adjoint
and independent of t. The symbol “ 忆冶 stands for d / dt.
摇 Note that the solution x( t) is continuous such that
A( t)x( t) is continuous differentiable. An admissible
control input u( t) of Eqs. (2) - (3) is continuous,
under which Eqs. (2) - (3) have a solution.
摇 Since A( t) is Moore鄄Penrose invertible for any t沂
[0,T], it follows that
X = K (A( t))彝茌K(A( t)) (5)
Y = I(A( t))茌I (A( t))彝 (6)
Then for any t沂[0, T], the orthogonal projections
P( t) and Q ( t) can be determined by I(P( t)) =
K(A( t)) and I(Q( t)) = I (A( t))彝 .
摇 Substituting the space decompositions Eqs. (5) -
(6) into Eq. (2), a new DAE can be obtained.
摇 Lemma 1 摇 The descriptor system ( 2 ) can be
reformulated as a new DAE
x忆1( t) = A - 1

1 (C11 - A忆1)x1( t) + A - 1
1 C12x2( t) +

摇 摇 摇 A - 1
1 B1u( t)

0 =C21x1( t) + C22x2( t) + B2u( t

ü

þ

ý

ïï

ïï)
(7)

with respect to the decompositions (5) - (6), where
x1( t) = (I - P( t))x( t),x2( t) = P( t)x( t), and
A1 = PI(A( t))A( t) | K(A( t))彝

B1 = PI(A( t))B( t)
B2 = PI(A( t))彝B( t)
C11 = PI(A( t))C( t) | K(A( t))彝

C12 = PI(A( t))C( t) | K(A( t))
C21 = PI(A( t))彝C( t) | K(A( t))彝

C22 = PI(A( t))彝C( t) | K(A( t

ü

þ

ý

ï
ï
ï
ï
ï

ï
ï
ï
ï
ï

))

(8)

摇 Proof 摇 Through the space decomposition, the
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system (2) can be expressed as
A1 0
0

æ

è
ç

ö

ø
÷

0
x1(t)
x2(t

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷)
忆 =

C11 C12

C21 C
æ

è
çç

ö

ø
÷÷

22

x1(t)
x2(t

æ

è
çç

ö

ø
÷÷)
+

B1

B
æ

è
çç

ö

ø
÷÷

2
u(t), i. e. , (A1x1(t))忆 =

C11x1( t) + C12 x2 ( t) + B1u( t) and 0 = C21 x1 ( t) +
C22x2 ( t) + B2u ( t), where the involved operator鄄
valued functions are defined in Eq. (8). From the
invertibility of A1, x忆1 ( t) = A - 1

1 (C11 - A忆1 ) x1 ( t) +
A - 1

1 C12x2( t) + A - 1
1 B1u( t).

摇 Remark 1摇 By space decompositions, the system (2)
with higher dimension can be reduced to a lower
dimensional system, which is easy to check and
compute.
摇 For V,W( t),S( t), R( t) and P( t),Q( t), a
natural assumption is given as follows.
摇 Assumption 1
摇 1) V is positive semi鄄definite;

摇 2) The operator matrix
W( t) S( t)
S*( t) R( t

æ

è
ç

ö

ø
÷

)
沂L(X茌Z)

is positive semi鄄definite for all t沂[0,T];
摇 3) P( t) and Q( t) are continuous.
摇 Based on Lemma 1 and Assumption 1, a sufficient
condition solving the OCP for system (2) - (4)can be
found.
摇 Theorem 1 摇 Under the conditions 1) and 2) in
Assumption 1, if the pair of continuous functions

( 寛x( t),寛u( t)):[0,T]寅X 伊 Z satisfies the following
equations
(A(t)x(t))忆 =C(t)x(t) +B(t)u(t) = y0
A(0)x(0 })

(9)

W( t)x( t) + S( t)u( t) = - (Vx( t)) 忆 +
(A1(C11 - A忆1))* 0

(A - 1
1 C12)* - d

d

æ

è

ç
çç

ö

ø

÷
÷÷

t
( - Vx( t)) (10)

S*(t)x(t) +R(t)u(t) = (A -1
1 B1)*( -V11 -V12)x(t)

(11)
V*

12x1(0) + V22x2(0) = V*
12x1(T) + V22x2(T) = 0

(12)

then 寛u( t) can be regarded as an optimal control for the
problem (2 ) - (4 ), where A1, B, C11, C12 are
defined in Eq. (8), and V11, V12, V*

12, V22 are the
entries of V as an operator on K (A( t))彝 茌

K(A( t)).

摇 Proof 摇 Let 寛x( t), 寛u( t) satisfy the system (9) -
(12), and u ( t), x ( t) be an arbitrary admissible
control input and the corresponding solution of the
problem (2) - (3), respectively. J(u( t),x( t)) -

J( 寛u( t),寛x( t)) = 1
2 掖 x ( T) - 寛x ( T),V ( x ( T) -

寛x(T))业 + U + 1
2 乙T

摇 摇
摇

摇摇
摇

0

x( t) - 寛x( t)

u( t) - 寛u( t

æ

è

çç

ö

ø

÷÷
)

,

W( t) S( t)
S*( t) R( t

æ

è
ç

ö

ø
÷

)
x( t) - 寛x( t)

u( t) - 寛u( t

æ

è

çç

ö

ø

÷÷

摇 摇
摇

摇摇
摇

)
dt can be got from

Eq. (4), here U = 乙T
0
(掖u( t) - 寛u( t),S*( t) 寛x( t) +

R( t) 寛u ( t)业 + 掖 x ( t) - 寛x ( t), W ( t) 寛x ( t) +
S( t) 寛u( t)业)dt + 掖x(T) - 寛x(T), 寛Vx(T)业 .
摇 From the conditions 1) and 2) in Assumption 1, if

U = 0, the inequality J ( u ( t), x ( t)) - J ( 寛u ( t),
寛x( t))逸0 can be obtained, and then 寛u ( t) is the
optimal control. In the following, U = 0 will be shown
by using Eqs. (9) - (12). In fact,

U = 掖x(T) - 寛x(T), 寛Vx(T)业 + 乙T (
0

掖u(t) - 寛u(t),

(A - 1
1 B1)*( - V11 摇 - V12) 寛x( t)业

摇 摇
摇

摇摇
摇+ x( t) -

寛x( t), - ( 寛Vx( t)) 忆 (- (A - 1
1 (C11 -

A忆1))* 摇 0(A - 1
1 C12)* 摇 - d

d )t
寛Vx( t

摇 摇
摇

摇摇
摇 )) dt =

掖x(T) - 寛x(T), 寛Vx(T)业 + 乙T (
0

掖A - 1
1 (C11 -

A忆1)(x1(t) - 寛x1(t)) +A -1
1 C12(x2(t) - 寛x2(t)) +

A -1
1 B1(u(t) - 寛u(t)), -V11 寛x1(t) -V12 寛x2(t)业 +

掖x( t) - 寛x( t), - ( 寛Vx( t)) 忆业
摇 摇

摇

摇摇
摇- x2( t) -

寛x2( t (), - d
d )t (V*

12 寛x1( t) + V22 寛x2( t
摇 摇

摇

摇摇
摇 ))) dt =

掖x(T) - 寛x(T), 寛Vx(T)业 + 乙T
0
(掖A - 1

1 (C11 -

A忆1)(x1(t) - 寛x1(t)) +A -1
1 C12(x2(t) - 寛x2(t)) +

A -1
1 B1(u(t) - 寛u(t)), -V11 寛x1(t) -V12 寛x2(t)业 +

掖x(t) - 寛x(t), - ( 寛Vx(t))忆业 + 掖(x2(t) - 寛x2(t))忆,

- V12 寛x1( t) - V22 寛x2( t))业)dt + 掖x2(T) -

14
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寛x2(T),V*
12 寛x1(T) + V22 寛x2(T)业 -

掖x2(0) - 寛x2(0),V*
12 寛x1(0) + V22 寛x2(0)业,

then

U = 掖x(T) - 寛x(T), 寛Vx(T)业 + 乙T
0
(掖(x1( t) -

寛x1( t)) 忆, - V11 寛x1( t) - V12 寛x2( t)业 +

掖x( t) - 寛x( t),( - 寛Vx( t)) 忆业 + 掖(x2( t) -
寛x2( t)) 忆, - V*

12 寛x1( t) - V22 寛x2( t))业)dt =

掖x(T) - 寛x(T), 寛Vx(T)业 + 乙T
0
(掖(x( t) -

寛x( t)) 忆, - 寛Vx( t)业 + 掖x( t) - 寛x( t),
( - 寛Vx( t)) 忆业)dt =
掖x(T) - 寛x(T), 寛Vx(T)业 +

乙T
0

d
dt掖x( t) - 寛x( t), - 寛Vx( t)业dt =

掖x(T) - 寛x(T), 寛Vx(T)业 + 掖x(T) - 寛x(T),
- 寛Vx(T)业 + 掖x(0) - 寛x(0), 寛Vx(0)业 =
掖x(0) - 寛x(0), 寛Vx(0)业

can be obtained from Lemma 1 and Eq. (12). Then

x1(0) = 寛x1 (0 ) is obtained from Eq. ( 9 ) and the
invertibility of A1, therefore, U = 掖 x2 (0) - 寛x2 (0),
V*

12 寛x1(0) + V22 寛x2 (0)业, and then U = 0 follows from
Eq. (12) immediately.
摇 Theorem 1 provides a skillful method solving the
OCP for system (2) - (4) by space decompositions
and Lemma 1. In contrast to the result in Ref. [17],
Theorem 1 does not need to introduce extra variables,
and it will make readers easier to design the OCP. The
solvability of the problem ( 2 ) - ( 4 ) under the
restriction of conditions (9) - (12) needs to discuss
further yet.

4摇 Solvability

摇 In Ref. [ 17 ], it is necessary to satisfy I(V)哿
I(A*(T)) and the invertibility of the 3 伊 3 operator
matrix for solvability of the OCP, however, the two
conditions are difficult to meet for general time鄄varying
dynamic systems. For this, the solvability of
Eqs. (2) - (4) will be considered without these two
limitations.
摇 Theorem 2摇 Under Assumption 1, for t沂[0,T],

if V12 and R( t) are invertible on K (A( t))彝 and Z,
respectively, and E( t) is positive semi鄄definite, then
the problem (2) - (4) is solvable, where E ( t) =
V11

V*

æ

è
çç

ö

ø
÷÷

12

(A - 1
1 B1)R - 1(A - 1

1 B1)*(V11 摇 V12) + W( t) -

S( t)R - 1( t)S*( t),and A1, B1, V11, V12 are defined
as in Lemma 1 and Theorem 1, respectively.
摇 Proof 摇 From Lemma 1, the problem (2) - (3)
can be rewritten as Eq. (7) and A1 (0) x1 (0) = y01

with y01 = PI(A( t)) y0 . Make the block representations

W( t) =
W11 W12

W*
12 W

æ

è
çç

ö

ø
÷÷

22

:K(A( t))彝茌K(A( t))寅

摇 摇 摇 K(A( t))彝茌K(A( t))

S( t) =
S1

S
æ

è
çç

ö

ø
÷÷

2
:Z寅K (A( t))彝茌K(A( t

ü

þ

ý

ï
ï
ïï

ï
ï
ï))

(13)
so that Eq. (10) can be decomposed into
-V11x忆1(t) -V12x忆2(t) = (W11 + (A -1

1 (C11 -A忆1))*·
V11)x1( t) + (W12 + (A - 1

1 (C11 - A忆1))*V12)·
x2( t) + S1u( t) (14)

0 = (W*
12 + (A - 1

1 C12)*V11)x1( t) + S2u( t) +
(W22 + (A - 1

1 C12)*V12)x2( t) (15)
摇 Since R(t) is invertible, u(t) = -R -1(t)(S*

1 x1(t) +
S*

2 x2 ( t )) - R - 1 ( t ) (A - 1
1 B1)* ( V11 x1 ( t ) +

V12x2( t)) can be obtained from Eq. ( 11 ). Then
Eqs. (7), (14) and (15) can be rewritten as
x忆1(t) =A -1

1 (C11 -A忆1)x1(t) +A -1
1 C12x2(t) -

摇 摇 摇 A -1
1 B1R -1(t)(S*

1 x1(t) +S*
2 x2(t)) -

摇 摇 摇 A -1
1 B1R -1(t)(A -1

1 B1)*(V11x1(t) +V12x2(t))
0 = -B2R -1(t)(S*

1 x1(t) +S*
2 x2(t)) -

摇 摇 B2R -1(t)(A -1
1 B1)*(V11x1(t) +V12x2(t)) +

摇 摇 C12x1(t) +C22x2(t

ü

þ

ý

ï
ï
ï
ï

ï
ï
ï
ï)

(16)
- V11x忆1( t) - V12x忆2( t) =

- S1R - 1( t)(A - 1
1 B1)*V11x1( t) -

S1R - 1( t)(A - 1
1 B1)*V12x2( t)) -

S1R - 1( t)(S*
1 x1( t) + S*

2 x2( t)) +
(W11 + (A - 1

1 (C11 - A忆1))*V11)x1( t) +
(W12 + (A - 1

1 (C11 - A忆1))*V12)x2( t) (17)
0 = - S2R - 1( t)(A - 1

1 B1)*(V11x1( t) + V12x2( t)) -
S2R - 1( t)(S*

1 x1( t) + S*
2 x2( t)) +

24
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(W*
12 + (A - 1

1 C12)*V11)x1( t) +
(W22 + (A - 1

1 C12)*V12)x2( t) (18)
respectively. Scalarly multiply the first equation of
Eq. (16) by V11 x1 ( t) + V12 x2 ( t), Eq. (17 ) by
- x1( t) and Eq. (18) by - x2 ( t), and add the
results, then
d
dt掖x1(t),V11x1(t) +V12x2(t)业 =

掖R -1(t)(S*
1 x1(t) +S*

2 x2( t)),S*
1 x1( t) +

S*
2 x2( t)业 - 掖W( t)x( t),x( t)业 -

掖R - 1( t)(A - 1
1 B1)*(V11x1( t) + V12x2( t)),

(A - 1
1 B1)*(V11x1( t) + V12x2( t))业 (19)

摇 Let x1(0) = V11x1(T) + V12x2(T) = 0. Integrating
Eq. (19) on [0,T], in combination with the boundary

conditions means that 乙T
0

d
dt 掖 x1 ( t), V11 x1 ( t) +

V12x2( t)业dt = 0, i. e. ,

乙T
0
掖R -1 ( t) ( S*

1 x1 ( t ) + S*
2 x2 ( t )), S*

1 x1 ( t ) +

S*
2 x2(t)业 - 掖W(t)x(t),x(t)业 -

掖R -1 ( t) (A -1
1 B1)* (V11 x1 ( t) + V12 x2 ( t)),

(A -1
1 B1)*(V11x1(t) +V12x2(t))业dt =

- 乙T
0
掖(Ex)(t),x(t)业dt =0 (20)

Because E(t) is positive semi鄄definite and continuous with
respect to t, it follows from Eq. (20) that E(t)x(t)以0,
i. e. ,
(W11 -S1R -1(t)S*

1 )x1(t) +(W12 -S1R -1(t)S*
2 )x2(t) =

-V11(A -1
1 B1)R -1(t)(A -1

1 B1)*(V11x1(t) +V12x2(t))
(21)

Then V11 x1 ( t ) + V12 x2 ( t ) 以 0 according to
Eqs. (17), ( 21 ) and the boundary condition
V11x1(T) + V12x2(T) = 0. So x ( t ) 以 0 can be
obtained by the first equation of Eq. (16 ) and the
invertibility of V12 on K(A( t))彝, that is, the
system (8) - (12) with boundary condition x1 (0) =
V11 x1 ( T) + V12 x2 ( T) = 0 is uniquely solvable.
Therefore, the problem (2) - (4) is solvable.
摇 In view of V11 x1 ( t) + V12 x2 ( t) 以0, from the
second equation of Eq. ( 16 ), the following similar
result still holds when B2R - 1( t)S*

2 - C22 is invertible.
摇 Theorem 3 摇 Under Assumption 1, if R ( t) and
B2R - 1( t) S*

2 - C22 are invertible for t沂[0,T],and
E( t) is positive semi鄄definite, then the problem

(2) - (4) is solvable, where B2,C22,E( t) and S2

are defined as in Lemma 1, Theorem 1 and the
expression (13), respectively.
摇 Note from Theorems 2 and 3 that some sufficient
conditions for the solvability of the problem (2) - (4)
under the restriction of conditions (9) - (12), without
I(V)哿I(A* (T)) and the invertibility of the 3 伊 3
operator matrix are obtained. However, Theorems 2
and 3 still require some constraints on the operator V,
and thus we are devoted to dropping these constraints.
摇 Theorem 4 摇 Under Assumption 1, if R ( t) and
W12 - S1R - 1( t)S*

2 (or V12) are invertible for t沂[0,
T], and F ( t) = W ( t) - S ( t) R - 1 ( t) S* ( t) is
positive semi鄄definite, then the problem (2) - (4) is
solvable, where W12, S1, S2 are defined as in
Eq. (13).
摇 Proof 摇 According to the expression of F ( t),
Eq. (20) can be rewritten as

- 乙T
0
掖R -1(t)(A -1

1 B1)*(V11x1(t) +V12x2(t)),

(A - 1
1 B1)*(V11x1( t) + V12x2( t))业 +

掖F( t)x( t),x( t)业dt = 0 (22)
with x1(0) = V11x1(T) + V12x2(T) = 0. Since F( t),
R - 1( t) are positive semi鄄definite and continuous with
respect to t, it follows from Eq. (22) that F(t)x(t)以0
and R -1 ( t) (A -1

1 B1)* (V11 x1 ( t) + V12x2( t))以 0,
then
(W11 - S1R - 1( t)S*

1 )x1( t) + (W12 -
S1R - 1( t)S*

2 )x2( t)以0 (23)
(W*

12 - S2R - 1( t)S*
1 )x1( t) + (W22 -

S2R - 1( t)S*
2 )x2( t)以0 (24)

From Eqs. (16), (23) and the invertibility of W12 -
S1R - 1( t)S*

2 (or from Eqs. (16),(17), (23) and
the invertibility of V12 ), it follows that x ( t) 以 0,
whence the problem (2) - (4) is solvable.
摇 Similar to Theorem 4, the following result can be
obtained.
摇 Theorem 5摇 Under Assumption 1, if R(t) and W22 -
S2R - 1 ( t)S*

2 are invertible for t沂[0,T], and F( t) is
positive semi鄄definite,then the problem (2) - (4) is
solvable, where W22, S2 are defined as in Eq. (13).

5摇 Examples

摇 This section provides some interesting examples to
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demonstrate the validity of theoretical results and
compares with those of Ref. [17].
摇 Example 1摇 Let X = Y = L2[0,T]茌L2[0,T], Z =

L2[0,T],A( t) =
0 tI
0

æ

è
ç

ö

ø
÷

I
, C( t)以

0 I
0

æ

è
ç

ö

ø
÷

0
, B( t)以

Iæ

è
ç

ö

ø
÷

0
,V =

0 0
0

æ

è
ç

ö

ø
÷

0
, W( t)以

I 0
0

æ

è
ç

ö

ø
÷

0
, S( t)以(0, 0) T,

R( t) 以 I, y0 = (0,浊T
2) T,浊2 屹0. It is obvious that

K(A( t)) = { ( fT1,0) T: f1 沂L2 [0,T]}, I(A( t)) =

{( tfT2,fT2) T: f2 沂 L2 [ 0, T]}, P ( t) 以
I 0
0

æ

è
ç

ö

ø
÷

0
and

Q( t) = 1
1 + t2

I - tI
- tI t2

æ

è
ç

ö

ø
÷

I
. By computing, W22 is

invertible on K(A( t)) and F( t) = W( t) is positive
semi鄄definite, which satisfies the conditions of
Theorem 5 and then the optimal control for Eqs. (2) -

(4) exists. In the following, the optimal control 寛u( t)
can be found. In fact, the system (9) - (12) becomes

0 tI
0

æ

è
ç

ö

ø
÷

I
x( tæ

è
ç

ö

ø
÷) 忆 =

0 I
0

æ

è
ç

ö

ø
÷

0
x( t) +

Iæ

è
ç

ö

ø
÷

0
u( t) (25)

0 0
0

æ

è
ç

ö

ø
÷

I
x(0) = y0 =

0
浊

æ

è
ç

ö

ø
÷

2
(26)

I 0
0

æ

è
ç

ö

ø
÷

0
x( t) +

0æ

è
ç

ö

ø
÷

0
u( t) = 0 (27)

(0摇 0)x( t) + u( t) = 0 (28)
Eqs. (27) and (28) immediately lead to 孜1 ( t) =
u( t)以0, where x( t) = (孜1 ( t) T,孜2 ( t) T) T沂L2 [0,
T]茌L2[0,T]. It follows from Eq. (25) that 孜忆2( t) =
0, which together with the initial condition (26) gives
孜2( t)以浊2 . Consequently, the problem (9) - (12)

has the unique solution 寛x( t)以y0, 寛u( t)以0, and then
寛u( t)以0 is the optimal control for Eqs. (2) - (4).
摇 In addition, some image simulations are used to
verify the authenticity of the obtained results. For

Eqs. (2) - (3), 孜2 ( t) 以浊2 and 寛u ( t) 以0 can be
gained, then the associated quadratic cost functional

can be expressed as J = 1
2 乙

T

0
孜2

1( t)dt, where 孜1( t) is

any function about t. Because of the arbitrariness of
孜1( t), T = 10 and three special functions sin t, cos t,
t2 + 1 can be chosen without loss of generality.

摇 Obviously, the area of blue part in Fig. 1 is 乙T
0
孜2
1(t)dt

and J equals 2郾 385 9, 2郾 614 1, 10 338, respectively.
Further, J逸0 can be obtained for any function 孜1(t).
Thus, from the minimum J = 0,孜1 ( t)以0 can be got.
Therefore, the optimal control and relevant solution
寛u( t)以0, 寛x( t)以y0 can be obtained.

Fig. 1摇 Images of 孜2
1(t) by three special functions in Example 1

摇

摇 In Ref. [17], the condition I(V)哿I(A*(T)) and
the invertibility of 3 伊 3 operator matrix are necessary,
but those are unnecessary and easy to check for
Example 1 in this work. In fact, we can solve the
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problems if these conditions fail as follows.
摇 Example 2 摇 Choose V = 琢I, 琢 > 0, 浊2 = 0 in
Example 1,

A1 =
0 tI
0

æ

è
ç

ö

ø
÷

I K(A( t))彝
,A - 1

1 =
0 0
0

æ

è
ç

ö

ø
÷

I I(A( t))
,

C11 =
0 t2

1 + t2
I

0 t
1 + t2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷I K(A( t))彝

,

C12 =
0 t2

1 + t2
I

0 t
1 + t2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷I K(A( t))

,

C22 =
0 1

1 + t2
I

0 - t
1 + t2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷I

K(A( t))

,

B1 =

t2

1 + t2
I

t
1 + t2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷I
, B2 =

1
1 + t2

I

- t
1 + t2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷I
,

V11 =
0 0
0 琢

æ

è
ç

ö

ø
÷

I K(A( t))彝
, V12 =

0 0
0 琢

æ

è
ç

ö

ø
÷

I K(A( t))
,

V22 =
琢I 0
0

æ

è
ç

ö

ø
÷

0 K(A( t))
, W11 =

0 0
0

æ

è
ç

ö

ø
÷

0 K(A( t))彝
,

W12 =
0 0
0

æ

è
ç

ö

ø
÷

0 K(A( t))
, W22 =

I 0
0

æ

è
ç

ö

ø
÷

0 K(A( t))
.

Obviously, A( t) may not be invertible, but A1 as an
operator from K (A( t))彝 to I(A( t)) is invertible. So
we can deal with this example without the range
inclusion condition and the invertibility of G ( t ).
Similarly, the system (9) - (12) can be used to solve
the problem of minimizing the function (4) with the
system (2) - (3). We now find the optimal control

寛u(t). In fact, Eq. (9) is equivalent to
0 tI
0

æ

è
ç

ö

ø
÷

I
x(tæ

è
ç

ö

ø
÷) 忆 =

0 I
0

æ

è
ç

ö

ø
÷

0
x( t) +

Iæ

è
ç

ö

ø
÷

0
u( t) and

0 0
0

æ

è
ç

ö

ø
÷

I
x(0) = y0 =

0æ

è
ç

ö

ø
÷

0
.

It means 孜1 (0) = 孜2 ( t) = u( t)以0, where x( t) =
(孜1 ( t) T,孜2 ( t) T) T沂 L2 [0, T] 茌 L2 [0, T]. Since
x1(t) = (0, 孜2 (t)T)T,x2(t) = (孜1 (t)T, 0)T, it follows

that (A -1
1 (C11 -A忆1))* = 1

1 + t2
0 0
0

æ

è
ç

ö

ø
÷

I
0 - I
0 t

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

I

*

=

1
1 + t2

0 0
0 t

æ

è
ç

ö

ø
÷
I
,(A -1

1 C12)* = 1
1 + t2

0 0
0

æ

è
ç

ö

ø
÷
I

0 - t2I
0 t

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

I

*

=

1
1 + t2

0 0
0 t

æ

è
ç

ö

ø
÷

I
,Vx( t) =

0 0 0 0
0 琢I 0 琢I
0 0 琢I 0
0 琢I 0

æ

è

ç
ç
çç

ö

ø

÷
÷
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0

0
孜2( t)
孜1( t)

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0

=

0
琢孜2( t)
琢孜1( t)
琢孜2( t

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

)

=

0
0

琢孜1( t)

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0

, then Eq. (10) is equivalent to

0 0 0 0
0 0 0 0
0 0 砖 0
0 0 0

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

0

0
孜2(t)
孜1(t)

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0

=

0 0 0 0

0 tI
1 + t2

0 0

0 0 - d
dt 0

0 tI
1 + t2

0 - d
d

æ

è

ç
ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷
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t

·

0
0

- 琢孜1( t)

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0

=

0
0

琢孜忆1( t)

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0

, which means that 孜1 ( t)以

0. Therefore the problem (9) - (10) has the unique

solution 寛x ( t ) 以 (0,0) T, 寛u ( t ) 以 0, and then
Eqs. (11) and ( 12 ) hold, which implies that the

problem (9) - (12) has the unique solution 寛x( t)以

(0, 0) T, 寛u( t)以0, then 寛u ( t) 以0 is the optimal
control for Eqs. (2) - (4).
摇 In addition, through some numerical simulations, we
can test the correctness of the obtained results. From

Eqs. (2) - (4), 孜2 ( t)以0, 寛u( t)以0 and then the
associated quadratic cost functional can be expressed as

J = 1
2 琢孜2

1 (T) + 1
2 乙

T

0
孜2

1 ( t) dt, where 孜1 ( t) is any

function about t. Because of the arbitrariness of 孜1( t),
T = 10 and three special functions t1 / 3, 2 t, t3 - 3 can
be chosen without loss of generality.

摇 Obviously, the area of blue part in Fig. 2 is 乙T
0
孜2
1(t)dt

and J equals 13郾 925 + 2郾 320 8琢, 378 190 +
524 290琢, 706 830 + 497 000琢, respectively. Further,
we can see that for any function 孜1( t), J逸0 since the
arbitrariness of 孜1 ( t). Thus, the minimum J = 0
makes 孜1( t)以0. Therefore, the optimal control and

relevant solution 寛u ( t) 以0, 寛x ( t) 以(0, 0) T can be
obtained.
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Fig. 2摇 Images of 孜2
1(t) by three special functions in Example 2

摇

摇 Examples 1 and 2 discuss finite sum cases, and the
following example will extend to infinite ones.
摇 Example 3摇 Let X = Y = L2[0,T]茌L2[0,T]茌. . .
be the orthogonal sum of an infinite number of L2 [0,

T], and Z = L2[0,T], A( t)以
0 I 0 . . .
0 0 0 . . .
左 左

æ

è

ç
çç

ö

ø

÷
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左
,

C( t)以
I 0 . . .
0 0 . . .
左
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左
, B( t) 以(I,0T,0T,. . . ) T,

W(t)以
I 0 . . .
0 0 . . .
左

æ
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çç
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ø

÷
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左
,V =

0 0 . . .
0 0 . . .
左

æ
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ç
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÷
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左
,R( t)以

I,S( t) 以(0,0,. . . ) T . In this example, the dotted
line “ . . . 冶 in matrices represents an infinite number of
zero matrices unless otherwise specified. And y0 以
(I / 2,I / 3,. . . ) T is an infinite matrix whose ith entry is
I / ( i + 1). Obviously, K(A( t)) = {( fT1,0,0,. . . ) T:
f1 沂 L2 [ 0, T ]}, I ( A ( t )) = X, P ( t ) 以
I 0 . . .
0 0 . . .
左

æ

è

ç
çç
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÷
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左
, Q( t) =

0 0 . . .
0 0 . . .
左
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左
. Further,

B2R - 1( t) S*
2 - C22 =

0 0 . . .
0 0 . . .
左

æ

è

ç
çç
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÷
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左
as an operator

on the space I (A( t))彝 can be regarded as being
invertible, and E( t) =W( t) is positive semi鄄definite.
Thus we can get the optimal control for Eqs. (2) - (4)
from Theorem 3.
摇 In fact, the system (9) - (12) is equivalent to
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0 0 0 . . .
左 左
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左
x(0) = y0 (30)
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(0 0 . . . )x( t) + u( t) = 0 (32)
摇 Eqs. (31) and (32) immediately lead to 孜1 ( t) =
u( t)以0, where x( t) = (孜1 ( t) T,孜2 ( t) T,. . . ) T沂X
is the infinite matrix whose ith entry is 孜 i ( t) T . From
Eq. (29), we derive that 孜忆i ( t) = 0, i逸2, which
together with the initial condition (30) gives 孜 i( t)以
I / i, i逸2. Therefore the problem (9) - (12) has the

unique solution 寛x( t)以(0,I / 2,I / 3,. . . ) T, 寛u( t)以0,

here 寛x( t) is the infinite matrix whose ith entry is I / i

for i > 0, and then 寛u( t)以0 is the optimal control for
Eqs. (2) - (4).
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摇 In addition, we can use some image simulations to
examine the validity of the obtained results. For
Eqs. (2) - (3), we can get 孜2 (0)以I / 2, 孜 i ( t)以
I / i, i 逸 3, and then the associated quadratic cost

functional can be expressed as J = 1
2 乙T

0
( 孜2

1 ( t) +

u2( t))dt, where 孜1 ( t) and u ( t) are any function
about t. Because of the arbitrariness of 孜1 ( t) and
u( t), T = 7 and some special functions 孜1 ( t) = t1 / 3,
2 t, t3 - 3, u( t) = sin t, cos t, t2 + 1 can be chosen
without loss of generality.
摇 Obviously, the area of blue part in Fig. 3 is

乙T
0
(孜2

1(t) + u2 ( t)) dt and J equals 9郾 310 7, 5 910郾 8,

58 854, respectively. Further, for any 孜1 ( t) and
u( t), J逸0 since the arbitrariness of 孜1( t) and u( t).
Thus, from the minimum J = 0, 孜1( t) = u( t)以0 can
be obtained, and then 孜忆2 ( t) = 0, 孜2 ( t) 以 I / 2.
Therefore, the optimal control and relevant solution
寛u( t)以 0, 寛x ( t ) 以 (0,I / 2,I / 3,. . . ) T can be

obtained, here 寛x ( t) is the infinite matrix whose ith
entry is I / i for i > 0.

Fig. 3摇 Images of 孜2
1( t) + u2( t) by three special functions

摇

摇 In Example 3, the range inclusion and invertibility
conditions are still not necessary.

6摇 Conclusions

摇 In this paper, the LQOCP for time鄄varying descriptor
systems in a real Hilbert space is discussed. Some new
sufficient conditions for the solvability of such problem
are obtained by means of the Moore鄄Penrose inverse
and space decomposition, which are important analysis
tools to discuss the LQOCP for time鄄varying descriptor
systems. The generalized inverse theory and space
decomposition technique proposed in this paper is a
new, useful and effective method to deal with the
solvability for the LQOCP for time鄄varying descriptor
systems, which will help gain a deeper understanding
for the LQOCP.
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