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Abstract 

Information fusion is a key step in multimodal biometric systems. The feature-level fusion is more effective than the 

score-level and decision-level method owing to the fact that the original feature set contains richer information about the 

biometric data. In this paper, we present a multiset generalized canonical discriminant projection (MGCDP) method for 

feature-level multimodal biometric information fusion, which maximizes the correlation of the intra-class features while 

minimizes the correlation of the between-class. In addition, the serial MGCDP (S-MGCDP) and parallel MGCDP 

(P-MGCDP) strategy were also proposed, which can fuse more than two kinds of biometric information, so as to achieve 

better identification effect. Experiments performed on various biometric databases shows that MGCDP method 

outperforms other state-of-the-art feature-level information fusion approaches. 
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1  Introduction
  
 

 Biometric refers to the use of the physical 

characteristics of the human body as the identity of the 

technology, which essentially is a pattern recognition 

technology through special identity. At present, the most 

widely used biometric technology mainly relies on a single 

biometric information, such as face, fingerprint, palm vein, 

voice, iris, etc. Because the use of these methods alone 

may result in poor recognition rates, therefore, the use of 

multimodal biometric fusion technology for identification 

has become the focus of research in this field. 

Multimodal biometric fusion technology can be divided 

into feature-level, score-level and decision-level mode. In 

feature-level mode, data obtained from multi-sensor is 

used to compute a single feature vector. In score-level 

mode, each sensor provides a matching score indicating 

the proximity of the feature vector with the corresponding 

template vector. In decision-level mode, each sensor can 

capture multimodal biometric information and the 
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resulting feature vectors individually classified into accept 

or reject class [1–2]. 

The feature-level fusion method is more effective than 

the score-level and decision-level method in multimodal 

biometric recognition, the reason is that it fuse more 

original biometric information into a single vector before 

dimensional reduction procedure [3]. Traditional parallel 

[4] and serial [5] strategy provide the technical support for 

feature-level fusion. The serial fusion strategy is simply 

connecting two original feature vectors, so the dimension 

of fused new feature vector is the sum of the two original 

vectors. The parallel fusion strategy convert two original 

feature vector into a complex vector, therefore the 

dimension of fused new vector is equal to the maximal 

dimension in original feature vector. 

In recent years, the application of canonical correlation 

analysis (CCA) in multimodal biometric field attracted a 

growing number of researchers [6]. CCA convert the 

correlation of random vectors into a pair of variables, 

which are uncorrelated. The kernel CCA (KCCA)  

method [7] using non-linear method project two 

non-separable sets to a high dimensional linear separable 
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space. The discriminative CCA (DCCA) method [8] takes 

into account the feature between intra-class samples and 

between-class samples, it minimizes the difference of 

intra-class while maximizes the difference of 

between-class. The generalized CCA (GCCA) method [9] 

makes use of both the supervised information and the 

intra-class distribution matrix information. 

In this paper, we propose MGCDP method for 

multimodal biometric information fusion, which 

maximizes the correlation of the intra-class features within 

the modal while minimizing the correlation of the 

between-class between the modal. 

2  Basic concept of CCA 

CCA is an effective multi class data processing method, 

which is widely used in the analysis of the relationship 

between the two sets of data. Assuming that there are two 

sets of data matrix ×p n∈ℝX  and q n×∈ℝY , the 

dimensions of X  and Y  are p  and q respectively, 

and all of them contain n training feature vectors. CCA is 

to find a set of optimal direction vector α  and β , so 

that maximum the correlation between T

1
=a α X  and 

T

1
=b β Y . After determining the first set of canonical vector 

1 1
( , )a b , CCA will continue to search the second pairs of 

canonical vector 
2 2

( , )a b , in which T

2
=a α X  and 

T

2
=b β Y  not only uncorrelated with 

1 1
( , )a b , but also is 

the largest correlation between 
2

a  and 
2

b . In the same 

way, CCA can iteratively find all the d groups of canonical 

vector ( , )
d d

a b . 

If the sample space { | }nΩ = ∈ℝξ ξ  has two vectors 

with mean value of zero { | }p= ∈ℝX x x  and 

{ | }q= ∈ℝY y y , where x  and y  are different 

biometric modal sample from same person ξ , assume that 

XX

p p×∈ℝS  and q q

YY

×∈ℝS  are covariance matrix of the 

unimodal X  and Y  respectively, and that 
XY

p q×∈ℝS  

is covariance matrix of the multimodal X  and Y , (note 

that T

XY YX
=S S ), then the covariance matrix S  contains 

all feature information of the person ξ : 

XX XY

YX YY

var( ) cov( , )

cov( , ) var( )

  
= =   
   

S Sx x y
S

S Sy x y
           (1) 

Let p∈ℝα  and q∈ℝβ  are two non-zero vector, then 

the linear combination of x  and y  can be expressed as: 

T

1 1 2 2
= + + +

p p
a x a x a x…α x                      (2) 

T

1 1 2 2
= + + +

q q
b y b y b y…β y                         (3) 

In order to maximize the correlation between Tα x  and 
Tβ y , CCA uses Eq. (4) to find the projection in α  and 

β  directions: 

In order to maximize the correlation between Tα x  and 
Tβ y , CCA uses Eq. (4) to find the projection in α  and 

β  directions: 

T T

T T

cov( , )
( , )=

var( )var( )
J

α x β y
α β

α x β y
                     (4) 

Because: 
T T T

XX
var( )= var( ) =α x α x α α S α                     (5) 

T T T

YY
var( )= var( ) =β y β y β β S β                     (6) 

T T T T

XY
cov( , )= cov( , ) =α x β y α x y β α S β               (7) 

Therefore, the optimization criterion of CCA is: 
T

XY

T T

XX YY

( , )=J
α S β

α β
α S αβ S β

                     (8) 

 The goal of Eq. (8) is to find linear combinations of 
T T

1 2 X
=( , , , ) =

d
a a aɶ …X X W X  and T

1 2
=( , , , ) =

d
b b bɶ …Y Y  

T

Y
.W Y  In this case, T

X XY Y
cov( , )= ,ɶ ɶX Y W S W  var( )=ɶX  

T

X XX X
W S W , and T

Y YY Y
var( )= .ɶY W S W  By using the 

Lagrange multiplier method to solve the optimization 

problem of the covariance between ɶX  and ɶY , under the 

condition of var( )=var( )=ɶ ɶX Y I , the projection matrix 

X
W  and 

Y
W  can be determined by: 

1 1 2

XX XY YY YX X X

1 1 2

YY YX XX XY Y Y

=

=

− −

− −





⌢ ⌢

⌢ ⌢
S S S S W R W

S S S S W R W
                      (9) 

where the 
X

⌢
W  and 

Y

⌢
W  are eigenvectors, and the 2R  is 

the diagonal matrix of eigenvalues. 

3  MGCDP method 

Based on the basic concept of CCA, we propose the 

MGCDP method for multimodal biometric information 

fusion, which maximizes the correlation of the intra-class 

features within the modal while minimizing the correlation 

of the between-class between the modals. 

Assume the biometric feature set X  contains n 

samples (n feature vectors) from C classes, each class 

contains 
i
k  feature vector, let 

i
n  denotes the ith class, 

ij
x  denotes the jth feature vector from the 

i
n  class, 

=1 =1 =1

= =
ikC C

i ij

i i j

∪ ∪∪X n x . Let 
i

u  denotes the mean of 
ij

x  in 
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i
n  class, and let µ  denotes the mean of X , then 

iµ  

and µ  can be determined by Eqs. (10) and (11): 

1

1 ik

i ij

ji
n =

= ∑ xµ                                (10) 

1 1

1 ikC

ij i i

i j

n
n = =

= =∑∑ xµ µ                         (11) 

Therefore, if the dimension of the feature vector 
ij

x  is 

p, the between-class scatter matrix 
IX

p p×∈ℝS of X  is: 

T

IX

1

( )( )
C

i i i

i

n
=

= − −∑S µ µ µ µ                     (12) 

3.1  Intra-class feature projecting 

The first problem to be solved is that different classes in 

data X  need to be separated, that is, the intra-class 

scatter matrix 
IX

S  need to project into a diagonal matrix. 

Due to the high dimension of 
IX

S , direct operation can 

result in low efficiency, so it is necessary to reduce the 

dimension according to Eq. (13): 

opt 1 2
=[    ]

r
Q q q q…                            (13) 

where 
r

q  are the first r  eigenvectors corresponding to 

the first r  largest eigenvalues of p  dimensional matrix 

IX
S , and r p≪ . projecting matrix after dimensionality 

reduction is Eq. (14): 
T

IX opt IX opt
ˆ =

r r×
S Q S Q                             (14) 

It is worth noting that, due to the maximum number of 

eigenvalues is 1C − , therefore, the upper limit of r is also 

1C −  in the Eq. (13). 

Let 
IX

p r×∈ℝW  and 
(1/ 2)

IX opt IX
ˆ=

p r×

−
W Q S , then Eq. (14) 

can be transformed into Eq. (15): 
T

IX IX IX
=W S W I                             (15) 

After projection operation, the biometric data set X  

is: 
T

IX
=′X W X                           ( 1 6 ) 

The 
IX

W  project between-class scatter matrix 
IX

S  

into I  matrix means that all classes in biometric data set 

X  is separated. 

 Similarly, different classes in biometric data set Y  

can be separated in the same way. After projection 

operation, the biometric data set Y  is: 
T

IY
=′Y W Y                              (17) 

where 
IY

W  is the projection matrix, and T

IY IY IY
=W S W I . 

Through the above steps, the between-class scatter 
IX

S  

and 
IY

S  are projected into I matrix, therefore, all classes 

in X and Y are separated. 

3.2  Between-class feature projecting 

The second problem to be solved is that in order to 

ensure biometric data from X and Y have correlation only 

for a same user ξ , it is necessary to project covariance 

matrix of dimension reduced ′X  and ′Y  into a diagonal 

matrix, that is,  T

IXY
=′ ′ ′S X Y  is a diagonal matrix and 

IXY

r rS ×′ ∈ℝ . 

Assume that the rank of 
IXY
′S  is r, by using singular 

value decomposition (SVD) method, because 
IXY
′ =S  

T

XY
U V∑ , therefore T

IXY XY
=′U S V ∑ . The 

XY∑  is a 

diagonal matrix whose only main diagonal elements are 

non-zero, U and V are orthogonal matrices. Let 
1

2
CX XY

=
−

W U ∑  and 
1

2
CY XY

=
−

W V ∑ , then: 

1 1

T2 2
XY IXY XY CY IXY CX

( ) ( ) =
− −

′ ′=U S V W S W I∑ ∑            (18) 

Therefore, the final projection of biometric feature set X 

and Y are as follow: 
T T T

CX CX IX X
= = =′ɶX W X W W X W X                    (19) 

T T T

CY CY IY Y
= = =′ɶY W Y W W Y W Y                     (20) 

It is worth noting that, according to the above method, 

the between-class scatter matrix is still a diagonal matrix. 

Take ɶX  as an example: 
T T T T T T

IX CX IX CX IX
ˆ = =( )( ) =ɶ ɶS XX W W X W W X  

T T T T T

CX IX IX CX CX IX IX IX CX
        =W W XX W W W W S W W      (21) 

Eq. (15) shows that T

IX IX IX
=W S W I , therefore, 

1 1

T T 12 2
IX CX CX XY XY XY

= =( ) ( )=
− −

−ɶS W W U U∑ ∑ ∑           (22) 

The 
IX
ɶS  equals a diagonal matrix means that all 

classes in data X has been separated. Similarly, all classes 

in data Y can be separated in the same way. 

4  Fusion strategy of MGCDP 

Based on the MGCDP method mentioned above, we 

propose S-MGCDP and P-MGCDP strategy, which can 

fuse more than two kinds of biometric information, so as 

to achieve better identification effect. 

Let 1

L1
X , 2

L1
X , and 3

L1
X  denote three kinds of 

biometric information to be fused, the Figs. 1 and 2 show 

the S-MGCDP and P-MGCDP strategy, respectively. 
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Fig. 1  S-MGCDP fusion strategy 

 

Fig. 2  P-MGCDP fusion strategy 

 

In the S-MGCDP strategy, 1

L1
X  and 2

L1
X  are fused 

firstly, and the fused feature 
F12

X  can be expressed as: 

1

L1 X1 L1

F12 2

L2 X2 L1

=
w

w

 
 
 

W X
X

W X
                          (23) 

where 
X1

W  and 
X2

W  are projection matrix of 1

L1
X  and 

2

L1
X  by using MGCDP method, the 

L1
w  and 

L2
w  are 

weights ranging from 0 to 1, and subject to 
L1 L2

+ =1w w . 

Next, continue to fuse 
F12

X  and 3

L1
X  by using MGCDP 

method: 

F12 F12 F12

F123 3

L3 X3 L1

=
w

w

 
 
 

W X
X

W X
                         (24) 

where the 
F12
w  and 

L3
w  are also weights ranging from 0 

to 1, and subject to 
F12 L3

+ =1w w . 

In the P-MGCDP strategy, 2

L1
X  is fused with 1

L1
X  and 

3

L1
X  by using MGCDP method, respectively: 

1

L1 X1 L1

F12 2

L2 X2 L1

=
w

w

 
 
 

W X
X

W X
                      (25) 

2

L2 X2 L1

F23 3

L3 X3 L1

=
w

w

 
 
 

W X
X

W X
                     ( 2 6 ) 

and then, fuse the 
F12

X  and 
F23

X : 

F12 F12 F12

F123

F23 F23 F23

=
w

w

 
 
 

W X
X

W X
                       (27) 

where 
L1
w , 

L2
w , 

L3
w , 

f12
w  and 

F23
w  are weights 

ranging from 0 to 1, subject to 
L1 L2

+ =1w w , 
L2 L3

+ =1w w  

and 
F12 F23

+ =1w w . 

For both S-MGCDP and P-MGCDP strategy, the 

maximum length of fused feature vector is min{ 1,C −  

L1
rank }iX , =1,2, ,i k… . In order to keep the length of the 

fused vector as maximum as possible, in each step, the two 

feature sets with the highest ranks should be fused together. 

Therefore, all biometric modals should be sorted according 

to the rank of each matrix, thus 1 2

L1 L1
rank rank ≥ ≥X X  

3

L1
rank X . 

5  Experimental results 

5.1  Database 

The multimodal biometric experimental database 

consists of three modes: palm vein, human face and 

fingerprint. These basic data are from CASIA-MS- 

PalmprintV1 [10], PolyU multispectral palm print 

Database [11], CASIA-FaceV5 [12] and CASIA- 

FingerprintV5 [13]. 

The experimental database contains 700 users ( =700N ), 

each user contains 5 samples ( =5C ), and each sample 

consists of palm vein, human face and fingerprint data. If 

the number of users in the database is N and the number  

of sample is C, then the number of intra-class matches  

will be ( )!/ =7 0002( 2)!NC C −  and the number of 

between-class matches will be 2 ( 1)/2=6 116 250C N N − . 

Therefore, in this experimental database, the number of 

intra-class and between-class matches was 7 000 and     

6 116 250 respectively. Samples of experimental database 

are shown in Fig. 3. 

 

 
Fig. 3  Samples of experimental database 
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5.2  Unimodal biometric fusion 

To evaluate the effect of MGCDP method on fusing 

different algorithm feature from unimodal biometric data 

set, we use all 700 palm vein samples in experimental 

database, and three palm vein feature extraction algorithms 

are implemented: mutual foreground LBP (MF-LBP) [14], 

local invariant feature (LIF) [15] and adaptive Gabor filter 

(AGF) [16]. All users in this database contain 5 palm vein 

samples, we randomly select 3 samples for training, and 

the remaining 2 samples for testing. 

Figs. 4–7 show the fusion effect of different algorithm 

feature from unimodal biometric set, and Table 1 shows 

the equal error rate (EER) for different palm vein feature 

extraction algorithm in unimodal environment. In Table 1, 

A, B and C represent MFLBP, LIF and AGF respectively.  

The experimental results show that the use of MGCDP 

for fusion different algorithms can significantly improve 

the system recognition rate and reduce the EER, thus 

improving the performance of biometric recognition 

system. 

 

 
Fig. 4  Unimodal recognition rate curve of fusion of MF-LBP 

and LIF 

 
Fig. 5  Unimodal recognition rate curve of fusion of MF-LBP 

and AGF 

 
Fig. 6  Unimodal recognition rate curve of fusion of LIF and 

AGF 

 
Fig. 7  Unimodal recognition rate curve of fusion of MF-LBP, 

LIF and AGF 

Table 1  EER for different palm vein feature extraction 

algorithm 

Method 
EER/(%) 

A B C A+B A+C B+C A+B+C 

Serial 2.00 0.99 0.86 0.52 0.59 0.66 0.18 

Parallel 2.00 0.99 0.86 0.49 0.54 0.41 - 

KCCA 2.00 0.99 0.86 0.67 0.78 0.92 - 
DCCA 2.00 0.99 0.86 0.55 0.41 0.47 - 

GCCA 2.00 0.99 0.86 0.59 0.44 0.52 - 

S-MGCDP 2.00 0.99 0.86 0.22 0.36 0.30 0.15 

M-MGCDP 2.00 0.99 0.86 0.22 0.36 0.30 0.11 

The experimental results are consistent with the 

expectation that the fusion of a variety of relevant 

biometric information can improve the class discriminative 

degree, thereby improving system performance without 

additional original biometric information. 

5.3  Multimodal biometric fusion 

Next, we evaluate the effect of MGCDP method on 

fusing multimodal biometric data set. Three training 

samples were randomly selected from the experimental 

database, and the rest were used for testing, and the 

classification method is k-nearest neighbor (kNN). 

Biometric feature were extract by AGF [16], histogram of 

Gabor phase patterns (HGPP) [17], and latent fingerprint 
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matching (LFM) [18] methods from palm vein, human 

face and fingerprint data sets, respectively. The EER of 

these methods were evaluated after PCA and LDA 

dimension reduction step. 

Tables 2 and 3 shows the EER of recognition system 

under unimodal and multimodal, respectively. 

Experimental result shows that the MGCDP method is 

superior to the traditional fusion methods. In Table 3, A, B 

and C represent palm vein, human face and fingerprint 

respectively. 

Table 2  EER of unimodal biometric feature 

Unimodal feature EER/(%) 

Palm vein 2.80 

Human face 1.71 

Fingerprint 3.03 

Table 3  EER of multimodal biometric feature 

Method 
EER/(%) 

A+B A+C B+C A+B+C 

PCA + KCCA 0.75 0.74 0.61 0.44 

LDA + KCCA 0.82 0.71 0.63 0.52 

PCA + DCCA 0.69 0.64 0.71 0.55 

LDA + DCCA 0.89 0.81 0.83 0.67 

PCA + GCCA 0.51 0.65 0.59 0.40 

LDA + GCCA 0.67 0.86 0.72 0.63 

PCA + S-GCDP 0.39 0.29 0.32 0.16 

LDA + S-GCDP 0.33 0.27 0.29 0.13 

PCA + P-GCDP 0.30 0.17 0.24 0.10 

LDA + P-GCDP 0.27 0.19 0.25 0.12 

5.4  Generalization ability of MGCDP method 

In this experiment, the generalization ability of the 

MGCDP method is evaluated by identifying the new user 

data that is not appear in the training stage. All 

experimental data are divided into two parts: 
training

M  and 

test
M , which contain m and remaining 700 m−  groups 

user data, respectively. First, the MGCDP projecting 

matrix is calculated by using all the multimodal biometric 

samples from 
training

M  part, and then project all biometric 

feature in 
test

M  part with this projecting matrix. Finally, 

randomly select h groups multimodal biometric data as 

gallery set, and the remaining 5 h−  groups data as probe 

set. The effect of different number of user in 
training

M  and 

test
M  on identification were evaluated. It is worth noting 

that when the parameter m in the 
training

M  is selected, in 

order to avoid the number of features that exceed the 

number of classes, the number of features is limited to 

1m − . Table 4 shows the recognition rate under different m 

and x conditions. 

Table 4  Recognition rate under different m and h conditions 

Data set 
Recognition rate/(%) 

Training =50m  Training =100m  Training =150m  

Gallery =1h  86.57 89.74 87.93 

Gallery =2h  94.50 97.52 96.54 

Gallery =3h  95.49 96.94 97.11 

Fig. 8 shows the influence of feature dimension on 

system recognition rate when selecting different m values 

and fixing parameter 2h = . 

 
Fig. 8  Generalization of MGCDP under different training samples 

The experimental results show that with the increase of 

number of training data, the generalization ability of the 

MGCDP projecting matrix is enhanced, and the 

recognition accuracy of the system is improved. When 

=100m  and =2h , that is 
training

M  and 
test

M  contains 

100 and 2 groups of data, the overall recognition rate of 

the system reaches the maximum. The results show that 

the MGCDP method has a good ability to identify new 

user samples. 

6  Conclusions 

In this paper, we presented a feature fusion technique 

based on correlation analysis method. Our proposed 

method, called MGCDP, uses the class associations of the 

samples in the analysis. This method is aim to maximize 

the correlation of the intra-class features while minimize 

the correlation of the between-class. The MGDCP method 

can be used in biometric identification applications for 

fusing the features extracted from multiple modalities or 

combining different feature vectors extracted from a single 

modality. Extensive experiments on various multimodal 

biometric databases demonstrated that MGCDP method 

outperforms the other state-of-the-art feature-level 

information fusion approaches. 

To p. 50 


