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Abstract 

 The diversity in the phone placements of different mobile users’ dailylife increases the difficulty of recognizing human 

activities by using mobile phone accelerometer data. To solve this problem, a compressed sensing method to recognize 

human activities that is based on compressed sensing theory and utilizes both raw mobile phone accelerometer data and 

phone placement information is proposed. First, an over-complete dictionary matrix is constructed using sufficient raw 

tri-axis acceleration data labeled with phone placement information. Then, the sparse coefficient is evaluated for the 

samples that need to be tested by resolving L1 minimization. Finally, residual values are calculated and the minimum value 

is selected as the indicator to obtain the recognition results. Experimental results show that this method can achieve a 

recognition accuracy reaching 89.86%, which is higher than that of a recognition method that does not adopt the phone 

placement information for the recognition process. The recognition accuracy of the proposed method is effective and 

satisfactory. 
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1  Introduction
  
 

Smart mobile phones in which an accelerometer is 

embedded can sample the tri-axis acceleration data of 

mobile users in real time, which allows instantaneous 

recognition of their activities, such as standing, walking, 

and running. As compared to an activity recognition 

method that uses specified wearable body sensors, that 

which uses a mobile phone’s accelerometer has many 

advantages. For example, it does not require users to wear 

additional devices and can record and process activity data 

within mobile phones for a wide range of applications, 

including daily activity monitoring, intelligent health 

assistance, falling detection for elderly people, etc. 

Therefore, mobile user activity recognition has become an 

active topic in the mobile computing and ubiquitous 

computing research field [1–3]. In recent years, researchers 

have proposed different methods that use the tri-axis 
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acceleration data of mobile phones to recognize human 

activities. Most of these methods extract features from the 

captured acceleration signals and then build a 

classification model to recognize various activities. For 

example, Parviainen et al. proposed a Bayesian model [4], 

Lee et al. proposed a mixture-of-experts model [5], Deng 

et al. proposed a reduced kernel extreme learning machine 

model [6], Büber et al. proposed a k-nearest neighbor 

(KNN) model [7], and Zeng et al. proposed a 

convolutional neural networks model [8] to recognize 

activity.  

It should be noted that the place in which different users 

habitually carry their mobile phone differs, and therefore, 

the phone placements are diverse during sampling of the 

tri-axis acceleration data. This uncertainty increases the 

difficulty of activity recognition, because the data sampled 

may be completely different when the user is performing 

the same activity but carrying the phone in different body 

locations. Most recognition methods calculate the 

synthetic acceleration data by combing tri-axis 

acceleration data, and use synthetic acceleration data to 
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avoid the problem caused by the varying placement of 

mobile phones. To address this problem, various methods 

have been proposed using different approaches. For 

example, Wang et al. proposed a method to transfer raw 

tri-axis acceleration data into a different coordinate system 

to obtain higher recognition accuracy [9]. Zhu et al. 

proposed a method that uses the similarity of activities to 

achieve placement-independent results [10]. Wang et al. 

proposed a method that uses the fast Fourier 

transformation (FFT) curve to achieve a result that is 

placement-independent [11]. However, according to the 

results of our study and experiments, we argue that phone 

placement information, when used appropriately, can be a 

factor that facilitates the recognition of human activity. 

Further, in our method the additional operations that in 

order to achieve activity recognition to exclude the 

placement information are not necessary. 

In this paper, we propose a solution for recognizing 

human activity by means of a compressed sensing method 

using both acceleration data and phone placement 

information. Compressed sensing theory was originally 

used to reconstruct a signal using limited or incomplete 

samples if the signal is sparse in a certain transformation 

domain [12]. It can also be applied to pattern recognition 

fields, such as image, face, and speech recognition. Studies 

have been conducted on human activity recognition in 

which compressed sensing theory was applied. Zhang et al. 

proposed a sparse representation method to recognize 

human activity that uses wearable sensors data [13]. 

AKimura et al. proposed a compressed sensing method for 

human activity sensing that uses mobile phone 

accelerometers data [14]. Xu et al. proposed a compressed 

sensing method to recognize human activity in wearable 

body sensor networks [15]. In our previous study, we 

developed a compressed sensing method to recognize 

human activity that uses mobile phone acceleration data, 

which achieved satisfactory results [16]. However, we did 

not introduce phone placement information into this 

recognition method. In the present study, we took 

advantage of phone placement information for activity 

recognition and achieved a method that yields an even 

better recognition rate than that of the former method. Our 

experimental results show that by using the proposed 

method five human activities (standing, walking, running, 

walking upstairs, and walking downstairs) can be 

recognized with an accuracy rate of up to 89.86% when 

the mobile phones are carried in three different places (in 

the hand, trouser pocket, and handbag). 

The remainder of this paper is organized as follows. In 

Sect. 2, the theory of compressed sensing, and the existing 

work on human activity recognition by using a compressed 

sensing method are introduced. In Sect. 3 the human 

activity framework are described. The experimental results 

and analysis are presented in Sect. 4. Finally, the 

conclusions are shown in Sect. 5. 

2  Related work 

2.1  Compressed sensing theory 

Compressed sensing theory exploits the fact that many 

natural signals are sparse and compressible in the sense 

that their representations are concise when expressed in an 

appropriate basis. Random observation matrixes are used 

to project raw data into the required transformation domain. 

Suppose that α is a vector of unknown, y denotes the 

available observed measurements, and A is the data matrix 

to describe the relation between α and y. Then, we have 

=y Aα                                 (1) 

where 1N×
∈Ry , N M×

∈RA  and 1M ×
∈Rα .  

For applications where the number of measurements is 

much smaller than the number of unknowns (N<<M), data 

matrix A is also called an over-complete dictionary matrix. 

In this case, Eq. (1) represents an underdetermined system 

and α cannot be uniquely reconstructed from matrix A and 

measurements y. However, in situations where α is 

sufficiently sparse, we can reconstruct α with the L0 

sparsity formulation to obtain the approximate solution of 

α 

0arg min
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Eq. (2) represents a determined system and its solution 

is stable. However, it is intractable, because it is an NP 

hard problem. The traditional heuristic to approximate the 

sparsity L0 is to use the minimal energy L2 instead. It is 

well-known that L2 is a least square formation and can be 

efficiently resolved. As the energy minimization L2 is not 

necessarily equivalent to the sparsity L0 in most cases, 

with high probability the solution of Eq. (2) is the same as 

the L1 minimization: 

1
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It has been proved that this L1 minimization can be 

formulated as a convex optimization problem [12]. In this 

case, the optimization problem is well-posed and can be 

resolved in polynomial time. 

2.2  Compressed sensing method for human activity 

recognition 

The existing compressed sensing based human activity 

recognition methods can be described as follows. Tri-axis 

acceleration data ax, ay, and az are sampled at a given 

sampling rate. For each moment, the synthetic acceleration 

a is calculated as 
2 2 2

| | .x y za a a= + +a  A sample is 

composed of a set of synthetic acceleration data during a 

period of time, from which certain features are extracted. 

Consider that K different human activities need to be 

recognized. Each activity has Mi (i=1,2,...,K) training 

samples. For each sample, N features are extracted. All 

these features are used to construct a matrix A with N rows 

and M columns: 

1 2
[ , ,... ,..., ] N M

i K

×
= ∈RA A A A A                    (4) 

where Ai is a sub-matrix for activity i, iN M

i

×
∈RA , and 

1 2
...

K
M M M M= + + + . 

According to the compressed sensing theory described 

in the previous section, matrix A is the over-complete 

dictionary matrix for the K activities. Following Eq. (1), 

any given unknown input y ( 1N×
∈Ry ) that needs to be 

recognized can be represented as a linear span of the 

over-complete dictionary matrix 

=y Aα                                       ( 5 ) 

where 1M ×
∈Rα  is the sparse coefficient. Using this 

formulation, the class membership of y, which is encoded 

as the sparsest solution of the underdetermined system 

given in Eq. (1), can be evaluated by resolving Eq. (3).  

The above approach is used in existing human activity 

recognition methods based on compressed sensing theory. 

As compared with the existing studies, ours differs in the 

following two aspects:  

1) To set up an over-complete dictionary matrix, instead 

of calculating synthetic accelerations and extracting 

features, we use raw tri-axis acceleration data sampled by 

the mobile phone accelerometer. This eliminates the time 

and energy consumption required for calculating synthetic 

acceleration data and extracting features, resulting in a 

better performance, which is valuable, in particular for 

mobile applications that run under limited central 

processing unit (CPU) resources and energy supply 

conditions. 

2) We argue that the phone placement information can 

be useful for activity recognition. Include the phone 

placement information in the over-complete dictionary 

matrix can achieve better recognition accuracy. Therefore, 

our method requires no additional operations to eliminate 

the effects of different users’ diverse phone placements as 

compared to existing recognition methods. This also helps 

to reduce the calculation time and energy consumption. 

3  Framework 

In this section, we present our proposed framework for 

human activity recognition by means of raw tri-axis 

acceleration data and phone placement information. As  

Fig. 1 shows, the framework consists of three components: 

construction of the over-complete dictionary matrix, 

resolution of the sparse coefficient via L1 minimization, 

and residual value calculation to recognize the activity.  

 
Fig. 1  Activity recognition framework 

3.1  Construction of an over-complete dictionary matrix 

and resolution of sparse coefficients 

It has been proved that human activity signals captured 

by a mobile phone accelerometer are sparse in certain 

transformation bases [14], and therefore, we can use sparse 

data representation to describe human activity data based 

on compressed sensing theory. Suppose there are K 

different human activities that need to be recognized. For 

each activity, tri-axis acceleration data ax, ay, and az are 

sampled at one moment. We define vector a as 
3

[ , , ] ;    
x y z

a a a= ∈Ra a                      (6) 

which is one observed vector. During a time period, n 

observed vectors are sampled. We define 

1 2
[ , ,..., ];    , 3N

n
N n= ∈ =RV a a a V               (7) 

as one data sample. For each human activity, we collect 

training samples for L different user mobile phone 

placements, such as in the hand, trouser pocket, and 

handbag. Suppose ( 1,2,..., , 1,2,..., )
jiM i K j L= =  training 
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samples are collected for each activity with each 

placement. We construct matrix  ( 1,2,..., )
i

i K=A  for each 

activity in the format 

1 2 1 1 11 2 1

2 2 21 2 2 1 2

[ , ,..., ,..., ] [[ , ,..., ],

        [ , ,..., ],...,[ , ,..., ],...,

j L i

i j j j i j

i i i i i i i i M

i i i M i i i M

= =A A A A A V V V

V V V V V V
 

1 2

        [ , ,..., ]]
L L L iL

i i i M
V V V                      (8) 

where 1,2,..., , 1, 2,...,i K j L= = , and 
i j

j

N M

i

×

∈RA  is a 

sub-array combining all the sample data for activity i with 

placement j. Based on compressed sensing theory, matrix 
iN M

i

×
∈RA  is the over-complete dictionary matrix for 

activity i. 

Finally, we define a matrix A with N rows and M 

columns: 

1 2
[ , ,..., ,..., ] N M

i K

×
= ∈RA A A A A               (9 ) 

where 
1 2

... .
K

M M M M= + + +  Here, A is the 

over-complete dictionary matrix for all the activities with 

all placements. According to the description in the 

previous section, for any observed data y, we have 

=y Aα                              ( 1 0 ) 

where 
T 1

1 2[0,0,...,0, , ,..., ,0,...,0]
i

M

i i iM

×
= ∈Rα α α α  is 

the sparse coefficient, which can be evaluated by resolving 

Eq. (3). Here, random observation projection should be 

performed for both A and y before the resolution process. 

As compared with existing human activity recognition 

methods that do not using phone placement information, 

our method uses data for different phone placements to 

construct the over-complete dictionary matrix, which 

results in a more sufficient over-complete dictionary 

matrix with more information of activities. This can 

facilitate a better solution of the sparse coefficient to 

improve the activity recognition rate based on the 

compressed sensing theory. Second, we use raw tri-axis 

acceleration data sampled by the mobile phone 

accelerometer to construct the over-complete dictionary 

matrix, instead of calculating synthetic acceleration data 

and extracting features for this purpose as is done in the 

existing recognition methods. This reduces the calculation 

time and energy consumption, which results in a better 

recognition performance and is valuable for mobile device 

applications. 

3.2  Residual value calculation to recognize activity 

As described above, we can obtain sparse coefficient α  

of Eq. (3) by resolving L1 minimization as a convex 

optimization problem. Ideally, α  is a sparse vector in 

which all data are zeros, except the data located in the 

position representing the activity that is to be recognized, 

which are non-zero. Thus, when we resolve sparse 

coefficient α , we can recognize the activity by the 

distribution of the non-zero data. Unfortunately, because of 

the effects of sampling noise and calculating deviation, the 

sparse coefficient α  may be a little different from the 

ideal one for practical applications. The non-zero data may 

be located in places that do not match the tested activity. 

Fig. 2 shows the distribution for a resolved sparse 

coefficient α  against the sparse coefficient distribution 

for the standing activity. This example includes a total of 

five activities, standing, walking, running, walking upstairs, 

and walking downstairs. We can see that the great majority 

of the data are zeros and most of the non-zero data are 

located at the position for the standing activity. However, a 

few non-zero data are located at the positions for other 

activities. 

 
Fig. 2  Distribution of sparse coefficient values 

To handle this problem, we can calculate the residual 

value r between y and the training sample vector for each 

activity:  

2
( ) ;    1, 2,...,

i i i
r i Kδ= − =

⌢
� �y A α             (11) 

where Ai is the sub-matrix of dictionary matrix A that 

represents the activity class i and ( )
i

δ
⌢

α  denotes the 

sub-vector of vector 
⌢

α , which is in the same position as 

Ai in A. Suppose there are K activities, then, we can obtain 

K residual values, the minimum of which is selected to 

indicate the class of activity to be recognized. The reason 

is that the data within sparse coefficient α  should all be 

zeros, which results in a considerably larger residual value. 

Table 1 shows the calculated residual values for different 

activities based on the sparse coefficient values shown in 

Fig. 1. It clearly shows that the residual value for the 

standing activity is the minimum, and thus, indicates that 
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the activity in the case of this sample should be recognized 

as activity standing. 

  The activity recognition process of our solution can 

be summarized as the followings steps: 

Step 1  Construction of over-complete dictionary 

matrix A by sufficient training samples of different 

activities and different phone placements. 

Step 2  Random observation projection for over- 

complete dictionary matrix A and any testing sample y that 

needs to be recognized, and then, evaluation of sparse 

coefficient α  by resolving L1 minimization. 

Step 3  Calculation of the residual value between y and 

the training sample vector for each activity, and selection 

of the activity that is represented by the minimum residual 

value as the activity for the testing sample. 

Table 1  Residual value for different activities 

Activity Residual value 

Standing 0.094 4 

Walking 3.663 7 

Running 3.713 8 

Walking upstairs 3.667 3 

Walking downstairs 3.686 7 

4  Experiments and evaluation 

4.1  Dataset and experimental results 

We developed a program for Android mobile phones to 

collect tri-axis acceleration data for our experiment. Data 

of five types of activity (standing, walking, running, 

walking upstairs, and walking downstairs) were collected 

from 12 subjects (6 males and 6 females) whose ages 

ranged from 22 years to 53 years. The mobile phones used 

to collect acceleration data were normal mobile phones 

that the subjects used in their daily life, and therefore, the 

brand and model of the mobile phones varied. The subjects 

were asked to carry the mobiles phone in three places (in 

the hand, trouser pocket, and handbag) and we collected 

acceleration data for each activity. Therefore, a total of 15 

combinations of activity and phone placement were used. 

For each activity with each placement, we collected 

continuous acceleration data for 10 s, and repeated the 

procedure 10 times to reduce accidental error. The 

sampling rate was 50 Hz. We adopted a validation strategy 

consisting of dividing the entire dataset into two parts: 

80% of the data were used to construct the over-complete 

dictionary matrix and the remaining 20% were used for 

testing. We conducted two experiments in a Matlab 

simulation environment.  

First, we calculated the recognition rate of different 

activities based on our proposed framework when four 

widely used random observation matrices, Gaussian 

random matrix, Bernoulli random matrix, sparse random 

matrix, and Hadamard random matrix, were applied. The 

experiment was conducted 10 times with 10 different 

compression ratios in order to evaluate the effects of the 

compression ratio on the activity recognition accuracy. L1 

minimization was calculated using the 1L -MAGIC  

toolkit provided by Stanford University [17]. Table 2 and 

Fig. 3 show the experimental results. 

Table 2  Recognition rate of different random observations 

under different compression ratios 

Compression  

ratio/(%) 

Recognition rate/(%) 

Gaussian 

random  

matrix 

Bernoulli 

random  

matrix 

Sparse 

random  

matrix 

 Hadamard 

random 

 matrix 

100 89.86 86.84 86.61 83.99 

90 86.32 80.51 78.35 78.35 

80 82.56 75.73 76.92 70.66 

70 76.07 69.86 69.34 66.55 

60 71.51 66.95 67.98 66.55 

50 69.97 65.24 67.24 65.81 
40 69.23 64.44 65.19 64.44 

30 67.81 64.44 62.39 63.76 

20 66.72 62.39 61.65 60.68 

10 64.56 59.60 60.97 60.28 

 
Fig. 3  Recognition rate of different random observations 

under different compression ratios 

Second, we calculated the recognition rate of human 

activities achieved by a recognition method that does not 

use mobile phone placement information. The results were 

compared with those of our proposed method to evaluate 

the benefit of using mobile phone placement information. 

For this experiment, we mixed the acceleration data of 

each activity with different placements together to 

construct the over-complete dictionary matrix. Fig. 4 

shows the recognition rate with and without phone 

placement information using the Gaussian random matrix 

and the Bernoulli random matrix as the random 

observation matrices. 
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Fig. 4  Recognition rate with and without phone placement 

information 

4.2  Recognition performance evaluation 

In this section, we discuss the evaluation of the 

recognition performance of our framework. The results of 

the first experiment (Table 2 and Fig. 3) show that for our 

proposed method, regardless of the type of random 

observation matrix used, the trends of the recognition rate 

curves are similar. When the compression ratio is 100%, 

the recognition rate is the highest. When the compression 

ratio is decreased, the recognition rate is reduced. The 

reason is that when the compression ratio is reduced, the 

amount of data contained in the over-complete dictionary 

matrix is reduced, which affects the accuracy of the data 

reconstruction. Among the four random observation 

matrices we tested, the Gaussian random matrix shows the 

best recognition performance, regardless of the 

compression ratio used. The recognition performances for 

the remaining three random observation matrices are 

similar. When the compression ratio is set as 70% and 80%, 

the Hadamard random matrix shows the lowest recognition 

performance. This proves that the Gaussian random matrix 

is the best choice for our compressed sensing method to 

recognize human activity. 

In Fig. 3, we can also see that, when the compression 

ratio is reduced from 100% to 60%, the recognition rate is 

decreased faster, whereas when the compression ratio is 

reduced from 60% to 10%, the decrease in the recognition 

rate is slower. When the compression ratio is 10%, the 

recognition rate remains around 60%. These results prove 

the advantage of using a compressed sensing method that 

allows a signal to be reconstructed with limited or 

incomplete samples. It also indicates that it is possible to 

recognize activity using only a few compressed 

acceleration data instead of all the acceleration data, if the 

recognition rate is acceptable under that condition. This is 

reasonable for some mobile applications that need 

acceleration data transferred from the mobile phone to 

support the servers’ activity recognition. Transferal of 

compressed data reduces the network flows significantly in 

this case. 

The results of the second experiment (Fig. 4) shows that 

the recognition rate is higher when mobile phone 

placement information is used than when it is not, at any 

compression ratio for both the Gaussian random matrix 

and the Bernoulli random matrix. As mentioned above, we 

mixed the acceleration data of each activity with different 

placements together to construct the over-complete 

dictionary matrix for the second experiment. Thus, the 

over-complete dictionary matrix contained more 

information of activities than did that used in the first 

experiment, which was constructed by separating the 

different phone placements. This results in a better 

recognition performance when a compressed sensing 

method is used to resolve L1 minimization and finally 

recognize the target activity. These experimental results 

prove the effectiveness of our recognition framework. 

We used a confusion table (Table 3) to examine the 

experimental results in more detail. The table lists the 

specific recognition results of the five types of activity 

with the three placements when using the Gaussian 

random matrix with a compression ratio of 100%. In Table 

3, P_1, P_2 and P_3 represent the three placements, in the 

hand, trouser pocket, and handbag, respectively. It can be 

seen in Table 3 that the recognition rate of the standing 

activity type is the highest, while the recognition rate of 

the remaining types is lower. The reason is that the curve 

of the acceleration data for the standing activity differs 

significantly from those of the acceleration data for the 

remaining four activities. However, the curves of the 

acceleration data for the activities walking, running, 

walking upstairs, and walking downstairs have some 

similarities of varying degrees. The traditional activity 

recognition methods extract features from raw acceleration 

data and use these features to recognize activity. Thus, they 

can avoid the problem of similarity in the raw acceleration 

data. Our compressed sensing method uses raw 

acceleration data directly to calculate the sparse 

coefficients to recognize the activity. Similar data may 

interfere with this calculation, resulting in incorrect results. 

On the basis of the theory of compressed sensing, this 
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weak point can be improved from two aspects. On the one 

hand, the dimension of training sample M for the 

over-complete dictionary matrix can be increased so that 

the dimension N of the unknown samples is considerably 

smaller than M. On the other hand, the algorithm that 

resolves L1 minimization can be improved in order to 

improve the accuracy of the solved sparse coefficients, and 

thereby, improve the recognition rate.  

Table 3  Confusion table for using Gaussian random matrix with compression ratio 100% 

Activity Placement 
Standing Walking Running Walking upstairs Walking downstairs 

P_1 P_2 P_3 P_1 P_2 P_3 P_1 P_2 P_3 P_1 P_2 P_3 P_1 P_2 P_3 

Standing 

P_1 116 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

P_2 2 115 0 0 0 0 0 0 0 0 0 0 0 0 0 

P_3 1 0 116 0 0 0 0 0 0 0 0 0 0 0 0 

Walking 
P_1 3 0 0 108 0 0 0 0 0 1 0 5 0 0 0 
P_2 0 0 0 4 100 0 0 0 0 0 0 3 0 10 0 

P_3 0 0 0 0 0 107 0 0 3 0 0 5 0 2 0 

Running 

P_1 0 0 0 0 0 6 101 0 6 0 0 0 0 0 4 

P_2 0 0 0 0 7 0 2 105 0 0 0 0 0 3 0 

P_3 0 0 0 0 0 0 9 0 103 2 0 0 0 0 3 

Walking 

upstairs 

P_1 0 0 0 3 0 5 0 0 0 100 0 2 0 3 4 

P_2 0 0 0 0 0 0 0 0 0 1 98 0 9 9 0 

P_3 0 0 0 0 0 1 0 0 0 0 0 107 0 0 9 

Walking 

downstairs 

P_1 0 0 0 0 0 0 0 0 2 0 8 0 99 0 8 

P_2 0 0 0 5 0 0 0 0 0 3 7 0 0 102 0 

P_3 0 0 0 0 0 6 0 2 0 0 0 4 5 0 100 

   

The accuracy of our recognition method in the real 

world may be affected by one factor. We considered the 

three most frequently used placements of mobile phones 

(in the hand, trouser pocket, and handbag) in our 

experiment for building the framework, but users may 

carry their phones in additional different places that we 

have not considered. There are two means of resolving this 

problem. One is to train the framework with a larger-scale 

dataset that includes more placement labels and the second 

is to use transfer learning methodology to handle new 

placements. In our framework, the application of transfer 

learning is enabled by re-constructing the over-complete 

dictionary matrix using newly collected data. We are 

considering conducting further experiments with the 

large-scale dataset and applying transfer learning 

methodology to evaluate more activities and phone 

placements in future work. 

5  Conclusions 

In this paper, we proposed a compressed sensing method 

for recognizing human activity in which both acceleration 

data and phone placement information are utilized. The 

addition of phone placements information into the 

over-complete dictionary matrix results in a better 

over-complete dictionary matrix with more information of 

activities, which can help to improve the activity 

recognition rate. The experimental results showed that the 

proposed method can achieve a recognition accuracy up to 

89.86% for five human activities with three placements. 

This recognition accuracy is higher than that of a method 

that does not take into account phone placement 

information. Moreover, we also evaluated the effects of 

using different random observation matrixes. The 

experimental results showed that the Gaussian random 

matrix is the best choice for the proposed method.  
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