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Abstract 

In order to achieve the lateral control of the intelligent vehicle, use the bi-cognitive model based on cloud model and 

cloud reasoning, solve the decision problem of the qualitative and quantitative of the lateral control of the intelligent 

vehicle. Obtaining a number of experiment data by driving a vehicle, classify the data according to the concept of data and 

fix the input and output variables of the cloud controller, design the control rules of the cloud controller of intelligent 

vehicle, and clouded and fix the parameter of cloud controller: expectation, entropy and hyper entropy. In order to verify 

the effectiveness of the cloud controller, joint simulation platform based on Matlab/Simulink/CarSim is established. 

Experimental analysis shows that: driver’s lateral controller based on cloud model is able to achieve tracking of the desired 

angle, and achieve good control effect, it also verifies that a series of mental activities such as feeling, cognition, 

calculation, decision and so on are fuzzy and uncertain. 
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1  Introduction
  
 

In academic and industrial circles, studies on intelligent 

vehicles have drawn considerable attention. Such studies 

play an important role in the research on vehicles and 

intelligent transportation. Control methods are the key to 

the study of intelligent vehicles. Vehicle model parameters 

are extremely complex. The system model equation is 

nonlinear, and its system parameters constantly change 

over time.  

The lateral control of vehicle includes tradition methods 

and intelligent methods, the tradition methods include 

support vector method (SVM) [1], step control method [2], 

proportion-integral-derivative (PID) method [3]. Intelligent 

methods include fuzzy control method [4–5], and neural 

network control method [6–7], and so on. 

The current study aims to improve the accuracy, 
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robustness, and adaptability to various road conditions of 

the vehicle control algorithm. First, the convergence of 

vehicles toward trajectory tracking errors is investigated 

from the perspective of nonlinear system stability, which is 

the premise of vehicle tracking trajectory. Subsequently, 

the robustness and control algorithm that can adapt to the 

environment is also considered, thereby ensuring control 

performance when the running conditions of a vehicle are 

drastically changed. Finally, the function of vehicle motion 

control is expanded, which enables vehicles to complete 

the automatic overtaking task, adaptive cruise task, 

automatic parking task, flowing into traffic task and so on. 

Research on vehicle control cited above, some 

researchers only focused on lateral tracking control, some 

researchers only focused on longitudinal tracking control, 

without considering driving speed and driving direction as 

input values. When intelligent driving tasks increase in 

complexity, the control systems cited earlier are unable to 

adapt to complex tasks. In addition, the control system 

should be able to guarantee stability. The main 
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contributions of our study are as follows.  

1) A new uncertainty control system according to the 

Gaussian cloud model (GCM) and cloud reasoning is 

illustrated.  

2) The new model considers both speed and direction, 

whereas velocity and direction are mutually constrained.  

3) The speed control rules for intelligent driving 

vehicles are constructed, with reference to human driving 

experience.  

The results of each simulation experiment of tradition 

control method and intelligent control method are the same. 

The driver’s lateral control operation is different in the 

actual driving process, therefore, the simulation results of 

these control methods cannot represent the driver’s 

operations results. In this paper, the model of the driver’s 

lateral control based on cloud model is proposed. 

In the driving processing, the driver operate the steering 

wheel by driving experience according to the road 

environment, to make the vehicle drive with the expected 

target. Driver lateral control model is to build the vehicle 

steering control model, to make the vehicle’s driving 

direction track the desired direction self-adaptive, and 

satisfy the conditions of satisfying, smooth, speed and 

smart. 

Based on the fuzzy and uncertainty of a series of 

driver’s psychological activities, such as driver’s feeling, 

cognition, calculation and decision, the cloud model is 

introduced into the driver’s direction control model. The 

algorithm of cloud control has no special requirements for 

the mathematical model of the controlled object, and use 

intuitive control rules. The cloud model is founded on the 

traditional fuzzy set theory and probability statistics theory, 

it makes the precision of membership function extend to 

the uncertainty of statistical distribution, it realized 

uncertainty transformation between the qualitative and 

quantitative. The cloud controller of the driver lateral 

control use uncertainty in a statistical distribution, use 

cloud reasoning to enrich the driver’s lateral control model 

based on fuzzy reasoning, in order to express driver’s 

lateral control randomness that brings certainty in 

diversity. 

This paper is organized as follows. Sect. 1 presents the 

lateral control of the intelligent vehicle. Sect. 2 presents 

the GCM, the GCM algorithm, and cloud reasoning, 

including a preconditioned Gaussian cloud generator 

(PGCG), a post-conditioned Gaussian cloud generator 

(PCGCG), and a rule generator. Sect. 3 describes model of 

driver lateral control and cloud controller rules. Sect. 4 

provides the results of the simulation experiment and 

analysis. Finally, the conclusion of this paper is illustrated 

in Sect. 5. 

2  Model and problem formulation 

2.1  GCM 

The Gaussian distribution (GD) is one of the most 

important distributions in probability theory, in which the 

general characteristics of random variables are represented 

by means of the mean and variance of two numbers. As a 

fuzzy membership function, the bell-shaped membership 

function is mostly used in sets, which is typically 

expressed through the analytical expressions of ( )m x =  

( ) ( ){ }2
2exp / 2x a b− − . This study presents a cloud model 

based on the GD, called the GCM, which is defined as 

follows [8–9] 

Definition 1  U is expressed in a precise numerical 

quantitative domain. C(Ex, En, He) is a qualitative concept 

on U. If the value of x ( x U∈ ) is a random realization of 

the qualitative concepts of C, then the expectation of the 

( )2

x nGD ~ ,x N E E′  is denoted as Ex, and its variance is 

denoted as 2

n
E′ . Meanwhile, the expectation of the 

( )2

n n eGD ~ ,E N E H′  is denoted as En, and its variance is 

denoted as 2

e
H . 

n
E′  is the full form of the GD 

( )2

n n e~ ,E N E H′  and is a random realization [10]. The 

certainty degree of x in C is satisfied via 

( ) ( ) ( )( ){ }2 2

x n
exp / 2m x x E E= − − ′ . The distribution of x 

in the domain of U is called a Gaussian cloud (GC) [11]. 

The GC is given in Algorithm 1 [8,12]. 

Algorithm 1  The GC algorithm 

 

Input: three figures ( )x n e
, ,E E H  and the number of cloud drops 

n. 

Output: a sample set that represents concept extension and its 

certainty ( ), ,
i i

x m i=1,2,…,n. 

Step 1  To generate a Gaussian random ( )2

n n e~ ,E N E H′  

Step 2  To generate a Gaussian random 2

x n
~ ( , )x N E E′  

Step 3  To calculate the certainty: ( ) ( ){ 2

xexp /m x x E= − −  

( )( )}2 2

n
exp / 2 E′   

Step 4   Repeat Steps 1–3 until the number of cloud drops is n. 



 

12                     The Journal of China Universities of Posts and Telecommunications                     2017 

The algorithm causes distribution drops, called cloud 

distribution (CD). The algorithm of GCM can be obtained 

through a cloud generator (CG), which forms a forward 

Gaussian cloud generator (GCG), as shown in Fig. 1. The 

Gaussian random number generation method is the 

foundation of the whole algorithm. It generates uniform 

random numbers in [0,1] and uses them to calculate the 

Gaussian random number. Random number sequences are 

determined through the uniform random function of a seed. 

The method of using uniform random numbers to generate 

a Gaussian random number is described in detail in    

Ref. [13]. GC distribution (GCD) is different from the GD 

because the GCD algorithm uses the Gaussian random 

number twice, in which one random number is the basis of 

another random number. Among these: 

 
Fig. 1  The GCG 

1) When He = 0, the algorithm generates a precise value 

of En and the value of x is transformed into a GD. 

2) When He = 0, En = 0, the value of x of the algorithm 

generation is an exact value of Ex, and 1m ≡ . 

From 1) and 2), the certainty can be concluded as a 

special case of uncertainty, and the GD is a special case of 

the GCD. 

2.2  Cloud reasoning 

2.2.1  PGCG and PCGCG 

Knowledge forms a concept and its relationship with 

communicating and abstracting. The relationship among 

concepts forms certain rules, from which rules library and 

rules generator can be established through knowledge 

reasoning based on GC. Rules include preconditioned and 

post-conditioned rules. Preconditioned rules include one or 

several rules, whereas post-conditioned rules express the 

results and specific control actions generated by the 

preconditioned rules. In the control field, ‘perception- 

action’ can establish the rule library based on the 

relationship among concepts, thereby realizing control of 

uncertainty. 

A PGCG and a PCGCG are composed of the GCG, 

which is defined as follows: 

Definition 2  Assume the following rule: 

If A, then B, where A corresponds to concepts C1 in 

universal sets U1, and B corresponds to concepts C2 in 

universal sets U2. a is a specific value in universal sets U1, 

where the GCG generates a specific value of a based on 

the concept C1 of the certainty degree of m distribution, 

and [ ]0,1m ∈ , which is called PGCG [14], as shown in 

Fig. 2. 

     
Fig. 2  The PGCG 

The PGCG is given in Algorithm 2 [14]. 

Algorithm 2  The PGCG 

 

Input: three figures ( )x n e
, ,E E H  and a specific value a. 

Output: the distribution of drops (a, m) 

1) To generate a Gaussian random ( )2

n n e~ ,E N E H′  

2) To calculate the certainty: ( ) ( ) ( )( ){ }2 2

x
exp 2

n
m x x E E= − − ′   

3) To generate the distribution of drops (a, m) 

 

The distribution of drop (a, m) of the specific value of a 

and the certainty degree of m is shown in Fig. 3. 

 
Fig. 3  Cloud drop distribution of the PGCG 

Defintion 3  Assume the following rule: 

If A, then B, where A corresponds to concepts C1 in 

universal sets U1, and B corresponds to concepts C2 in 

universal sets U2. The certainty degree of m belongs to 

[0,1]. The GCG generates the certainty degree of m drop 

distribution, which is satisfied by applying concepts C2 in 

universal sets U2, called PCGCG [15], as shown in Fig. 4. 

 
Fig. 4  The PCGCG 
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The PCGCG is given in Algorithm 3. 

Algorithm 3  The PCGCG 

 

Input: three figures ( )x n e
, ,E E H  and certainty degree m. 

Output: the drop distribution (b, m) 

1) To generate a Gaussian random ( )2

n n e~ ,E N E H′  

2) To calculate the certainty: 
x n

2ln b E E m′= ± −  

3) To generate the distribution of drops (b, m) 

 

The drop distribution (b,m) of the cloud drop the 

specific value of b and the certainty degree of m is shown 

in Fig. 5. 

 
Fig. 5  Cloud drop distribution of the PCGCG 

2.2.2  Rule generator 

Definition 4  Assume the following rule: 

If E, then F, where E is the PGCG that generates the 

drop distribution (a, m) with a specific value of a and a 

certainty degree of m. F is the PCGCG that generates the 

drop distribution (b, m) of the cloud with a specific value 

of b and a certainty degree of m, which is called the 

single-condition single-rule GCG (SCSRGCG) [16–18]. 

The composition diagrams of PGCG and PCGCG are 

shown in Fig. 6. 

 
Fig. 6  The SCSRGCG 

The SCSRGCG is given in algorithm 4. 

Algorithm 4  The SCSRGCG 

 

Input: three figures ( )x n e, ,E E E
E E H , three figures ( )x n e, ,F F F

E E H , 

and a specific value a. 

Output: the drop distribution (b, m) 

1) To generate a Gauss random ( )' 2

n n e~ ,E E E
E N E H  

2) To calculate the certainty: ( ) ( ){ }
22

x n
exp / 2

E Em x E E
 = ′− −  
 

 

3) To generate a Gauss random ( )2

n n e
~ ,F F F

E N E H′  

4) If 
xa E< , then to calculate the certainty: 

x

F
b E= −  

n
2ln F

E m′ −  

5) If 
xa E> , then to calculate the certainty: 

x

F
b E= +  

n
2ln F

E m′ −  

6) To generate the distribution of drops (b, m) 

 

The SCSRGCG implies an uncertainty transfer in the 

conceptual reasoning process. In the universal sets U1 of 

the PGCG, the distribution of the certainty degree of m 

belongs to the specific value of a, whereas the certainty 

degree of m is the input of the PCGCG that generates the 

drop distribution (b, m) of the cloud specific value of b and 

the certainty degree of m. The processing of the certainty 

value of a to the certainty value of b is uncertain [19–20]. 

3  Model of driver lateral control 

3.1  Driver data analysis 

The lateral control of intelligent vehicle uses the cloud 

control and cloud reasoning on the vehicle steering of 

intelligent control. The purpose of vehicle steering control 

is to adjust the steering wheel so that the angle θ  

between the preview point and the heading direction of 

intelligent vehicle become zero, it is shown in Fig. 7. 

 
Fig. 7  The angle θ  

The model of driver lateral control includes input data 

and output data. The driver controls the operation of the 

steering wheel and obtains angular velocity of steering 

wheel .ω  The input data of driver lateral control model is 

the angle θ  that is between the preview point and the 
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heading direction of intelligent vehicle and acceleration of 

intelligent vehicle 
v

a . The output data of driver lateral 

control model is angular velocity of steering wheel, the 

angle of the steering wheel is obtained by the integral of 

the angular velocity. The preview distance is obtained by 

the speed of vehicle, then the preview point is calculated 

out, then angle θ  is calculated out. The acceleration of 

the intelligent vehicle 
V

a  is obtained by inertial 

navigation on the intelligent vehicle, the angular velocity 

of steering wheel ω  is obtained by controller area 

network (CAN) bus of intelligent vehicle. 

The input and output of driver lateral control model are 

shown in Fig. 8. 

 
Fig. 8  The input and output of driver lateral control model 

The driver lateral control model is based on the theory 

of cloud model and cloud reasoning, the data of driver 

lateral control model is obtained by experiment, carries on 

the statistical analysis, and builds the driver lateral control 

model: cloud controller. The experiment is adopted on 

Park Avenue, Beijing, which lasted 180 h of artificial 

driving, and record data once per 50 ms, the data record is 

more than 1.2 million. The probability density of input and 

output variable of driver lateral control model are shown in 

Figs. 9–11. 

 
Fig. 9  The probability density of 

Va   

 
Fig. 10  The probability density of θ  

 
Fig. 11  The probability density of the angular velocity ω  

3.2  Cloud controller rules 

The lateral control of the intelligent vehicle is single 

input and single output controller, the input of the cloud 

controller is the accelerator of intelligent vehicle 
V

a , the 

angle θ  between the heading directions of the intelligent 

vehicle and preview point. The output is the angular 

velocity ω . The variables 
V

,a  θ  and ω  can be 

described using five qualitative concepts, namely, ‘positive 

greater’, ‘positive less’, ‘near-zero’, ‘negative less’, and 

‘negative greater’. The input and output variables define 

the five qualitative concepts and construct a corresponding 

cloud regulation generator. 

The detailed the lateral control rules for intelligent 

vehicles are given in Algorithms 5 and 6.  

Algorithm 5  Rule sets ( )S V
R a  of 

V
a  

 
1) If accelerator 

Va  is positive greater 

2) Angular velocity ω  is less 

3) If accelerator 
Va  is positive less 

4) Angular velocity ω  is greater 

5) If accelerator 
Va  is negative less 

6) Angular velocity ω  is more 

7) If accelerator 
Va  is negative more 
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8) Angular velocity ω  is less 
 

Algorithm 6  Rule sets ( )S
R θ  of angle θ   

 
1) If preview point θ  is positive greater 

2) Angular velocity ω  is negative greater 

3) If preview point θ  is positive less 

4) Angular velocity ω  is negative less 

5) If preview point θ  is zero 

6) Angular velocity ω  is zero 

7) If preview point θ  is negative less 

8) Angular velocity ω  is positive less 

9) If preview point θ  is negative greater 

10) Angular velocity ω  is positive greater 
 
The parameter 

x n
,  E E  and 

e
H  settings of the 

qualitative concepts are shown in Tables 1–3. 

Table 1  Numerical characteristics of cloud model of 
Vα  

Vα
 V x n e( , , )E E Hα

 

Positive greater (1.5,0.20,0.004) 

Positive less (0.5,0.15,0.003) 

Zero - 

Negative less ( − 0.5,0.15,0.003) 

Negative greater ( − 1.5,0.20,0.004) 

Table 2  Numerical characteristics of cloud model of θ  

θ  x n e( , , )E E Hθ  

Positive greater (10,1.2,0.02) 

Positive less (5,1,0.02) 

Zero (0,1,0.01) 

Negative less ( − 5,1,0.02) 

Negative greater ( − 10,1.2,0.02) 

Table 3  Numerical characteristics of cloud model of ω  

ω  
x n e( , , )E E Hω  

Positive greater (20,3,0.005) 

Positive less (10,2,0.020) 

Zero (0,2,0.008) 

Negative less ( − 10,2,0.020) 

Negative greater (20,3,0.050) 

According to numerical characteristics of cloud model 

of input variables and output variables, establish to control 

rules of cloud controller for an intelligent vehicle, they are 

shown in Table 4.  

Table 4  Steering wheel angular velocity control rules 

Vα
 

ω  

θ  is 1 θ  is 2 θ  is 3 θ  is 4 θ  is 5 

1 5 6 6 7 7 

2 3 5 5 8 8 

3 2 3 4 6 6 

4 1 2 2 4 4 

The data in Table 4 represent the concept level of each 

variable. The ability of nonlinear mapping from input to 

output based on cloud model, complete the reasoning 

process of intelligent driving vehicles from the known 

input conditions to the quantitative output control, based 

on reasoning rules in Table 4. 

4  Simulation experiment of lateral control based 

on cloud model 

In order to verify tracking control ability of the cloud 

controller, the joint Simulink platform is established, the 

designed controller is simulated and verified, and the 

simulation platform is shown in Fig. 12. 

 
Fig. 12  Joint Simulink platform of cloud controller 

Target tracking angles and acceleration are experiment 

data of the vehicle in simulation platform. The acceleration 

tracking curve of cloud controller is shown in Fig. 13, the 

angle tracking curve of cloud controller is shown in    

Fig. 14. 
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Fig. 13  α  tracking curve 

 

 
Fig. 14  θ  tracking curve 

From the simulation results, it can be shown that the 

lateral controller based on cloud model learning driver 

behavior can realize the desired angle tracking, and verify 

the uncertain of the desired angle tracking according to 

simulation experiments, the tracking curve of cloud 

controller is different for the same angle tracking curve, as 

is shown in Figs. 13 and 14. In the driving process, the 

driver’s steering operation is different, and it also verifies 

that a series of mental activities such as feeling, cognition, 

calculation, decision and so on are fuzzy and uncertain, 

and show that the randomness of the driver in the lateral 

control generates the diversity. 

5  Conclusions 

In this paper, cloud model and cloud reasoning are 

applied to the lateral control of the intelligent vehicle. 

Under the same environmental conditions, there is 

uncertainty about the control behavior of the driver, but the 

control behavior of the driver has a statistical certainty. In 

the driving process, the control of the vehicle by the driver 

does not require specific accurate numerical values, the 

driver can achieve control well according to the qualitative 

operation. In intelligent driving, the intelligent vehicle 

satisfies the constraints of safety, speed, smart and smooth, 

and is a need for accurate numerical control. Cloud model 

and cloud reasoning are both qualitative and quantitative 

expressions, the qualitative concept is expressed 

quantitatively by the cloud model’s expectation, entropy, 

and hyper entropy, it can simulate the driver operation 

uncertainty in the driving process , but the cloud model’s 

expectation, entropy, and hyper entropy reflects the basic 

certainty of driving behavior uncertainty with statistical 

regularity. The simulation experiment results of driver 

lateral controller based on cloud model achieve control 

effect well. 
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